Assessment the Accuracy of Densitometry Measurements Using DMA PP2 Phantom
- 作者: Petraikin A.V.1, Smoliarchuk M.Y.1, Petryaykin F.A.2, Nisovtsova L.A.1, Artyukova Z.R.3, Sergunova K.A.1, Akhmad E.S.1, Semenov D.S.1, Vladzymyrsky A.V.1, Morozov S.P.1
-
隶属关系:
- Practical and Clinical Research Center of Diagnostics and Telemedicine Technologies
- Lomonosov Moscow State University
- Sechenov First Moscow State Medical University (Sechenov University)
- 期: 卷 25, 编号 3 (2019)
- 页面: 124-134
- 栏目: METHODS OF EXAMINATIONS
- ##submission.dateSubmitted##: 17.10.2019
- ##submission.dateAccepted##: 17.10.2019
- ##submission.datePublished##: 17.10.2019
- URL: https://journal.rniito.org/jour/article/view/1305
- DOI: https://doi.org/10.21823/2311-2905-2019-25-3-124-134
- ID: 1305
如何引用文章
全文:
详细
Purpose of the study — to assess the accuracy of dual energy x-ray absorptiometry (DXA ) for measurements of mineral bone density, bone mineral content, area of selected spine zone of examination as well as impact of subcutaneous fat layer and correction of auto-segmenting of the spine on the mentioned parameters. Material and Methods. The study was performed on iDXA scanner using the designed phantom DMA PP2 of the lumber spine with inlays to simulate subcutaneous fat (SF). To ensure correct assessment of measurements (precision and accuracy) the authors performed fivefold repeated scanning. Two modifications of the phantom were used, with and without SF inlays, as well as two methods for selection of spine range for examination – automatic and correction of autosegmentation. Results. Scanning of the phantom without SF inlays demonstrated a systematic understated values of bone mineral density (BMD) and bone mineral content (BMC) along the full measured interval: mean relative error of BMD for L1-L4 interval was 10.62% with automatic segmentation and 7.43% — with correction of autosegmentation. The least accuracy for BMD and BMC (1.53% and 0.90%, respectively) was observed during SF simulation and with correction of auto-segmentation of the spine. Analysis of variation coefficient for area of examined vertebrae, BMC and BMD demonstrated rather high precision of measurements, namely for BMD without SF in the L1-L4 interval amounted to 1.00% (auto-segmentation) and 0.56% (correction). Variation coefficient for scanning including SF inlays in the interval L1-L4 was 1.00% (auto-segmentation) and 0.68% (correction). Conclusion. The lowest level of accuracy was observed with the SFL object; in this case, the variation coefficient did not exceed 1% for all BMD interval. The mean value of the BMC accuracy also did not exceed 1% with the optimal scan parameters. The study proved the effectiveness of “RSK PK2” phantom when estimating the accuracy of BMD and BMC on iDXA scanner.
作者简介
A. Petraikin
Practical and Clinical Research Center of Diagnostics and Telemedicine Technologies
编辑信件的主要联系方式.
Email: alexeypetraikin@gmail.com
Cand. Sci. (Med.), Senior Researcher, Technical Monitoring and QA Development
Moscow
俄罗斯联邦M. Smoliarchuk
Practical and Clinical Research Center of Diagnostics and Telemedicine Technologies
Email: fake@neicon.ru
Research Officer, Nuclear Medicine Physician
Moscow
俄罗斯联邦F. Petryaykin
Lomonosov Moscow State University
Email: fake@neicon.ru
Resident, Department of Fundamental Medicine
Moscow
俄罗斯联邦L. Nisovtsova
Practical and Clinical Research Center of Diagnostics and Telemedicine Technologies
Email: fake@neicon.ru
Dr. Sci. (Med.), Professor, Chief Researcher
Moscow
俄罗斯联邦Z. Artyukova
Sechenov First Moscow State Medical University (Sechenov University)
Email: fake@neicon.ru
Student
Moscow
俄罗斯联邦K. Sergunova
Practical and Clinical Research Center of Diagnostics and Telemedicine Technologies
Email: fake@neicon.ru
Cand. Sci. (Tech.), Head of Technical Monitoring and QA Development Department
Moscow
俄罗斯联邦E. Akhmad
Practical and Clinical Research Center of Diagnostics and Telemedicine Technologies
Email: fake@neicon.ru
Researcher, Technical Monitoring and QA Development
Moscow
俄罗斯联邦D. Semenov
Practical and Clinical Research Center of Diagnostics and Telemedicine Technologies
Email: fake@neicon.ru
Researcher, Technical Monitoring and QA Development Department
Moscow
俄罗斯联邦A. Vladzymyrsky
Practical and Clinical Research Center of Diagnostics and Telemedicine Technologies
Email: fake@neicon.ru
Dr. Sci. (Med.), Deputy Director for Science
Moscow
俄罗斯联邦S. Morozov
Practical and Clinical Research Center of Diagnostics and Telemedicine Technologies
Email: fake@neicon.ru
Dr. Sci. (Med.), Professor, Director
Moscow
俄罗斯联邦参考
- Михайлов Е.Е., Беневоленская Л.И. Эпидемиология остеопороза и переломов. В кн.: Руководство по остеопорозу. М. : БИНОМ. Лаборатория знаний; 2003. С. 10-55.
- Lesnyak O., Ershova O., Belova K., Gladkova E., Sinitsina O., Ganert O. et al. Epidemiology of fracture in the Russian Federation and the development of a FRAX model. Arch Osteoporos. 2012;7:67-73.
- 2019 ISCD Official Positions - Adult. Available from: https://www.iscd.org/official-positions/2019-iscdofficial-positions-adult/.
- Аврунин А.С., Тихилов Р.М., Шубняков И.И. Динамическая оценка остеоцитарного ремоделирования костной ткани при использовании неинвазивного метода. Морфология. 2009;135(2):66-73.
- Мельниченко Г.А., Белая Ж.Е., Рожинская Л.Я., Торопцова Н.В., Алексеева Л.И., Бирюкова Е.В. и др. Федеральные клинические рекомендации по диагностике, лечению и профилактике остеопороза. Проблемы эндокринологии. 2017;(6):392-426. doi: 10.14341/probl2017636392-426.
- Аврунин А.С., Тихилов Р.М., Шубняков И.И. Медицинские и околомедицинские причины формирования высокого внимания общества к проблеме потери костной массы. Анализ динамики и структуры публикаций по остеопорозу. Гений ортопедии. 2009;(3):5-11.
- Glüer C.-C., Blake G., Lu Y., Blunt B.A., Jergas M., Genant H.K. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int. 1995;5(4):262-270.
- Wang L., Su Y., Wang Q., Duanmu Y., Yang M., Yi C. et al. Validation of asynchronous quantitative bone densitometry of the spine: Accuracy, short-term reproducibility, and a comparison with conventional quantitative computed tomography. Sci Rep. 2017;7(1): 6284. doi: 10.1038/s41598-017-06608-y.
- Blake G.M., Fogelman I. Technical principles of dual energy x-ray absorptiometry. Semin Nucl Med. 1997;27(3):210-228.
- Dequeker J., Pearson J., Reeve J., Henley M., Bright J., Felsenberg D. et al. Dual X-ray absorptiometry-crosscalibration and normative reference ranges for the spine: results of a European Community Concerted Action. Bone. 1995;17(3):247-254.
- Hind K., Cooper W., Oldroyd B., Davies A., Rhodes L. A cross-calibration study of the GE-lunar iDXA and prodigy for the assessment of lumbar spine and total hip bone parameters via three statistical methods. J Clin Densitom. 2015;18(1):86-92. doi: 10.1016/j.jocd.2013.09.011.
- Kalender W.A., Felsenberg D., Genant H., Fischer M., Dequeker J., Reeve J. The European Spine Phantom - a tool for standardization and quality control in spinal bone measurements by DXA and QCT. European J Radiology. 1995;20:83-92.
- Laugerette A., Schwaiger B.J., Brown K., Frerking L.C., Kopp F.K., Mei K. et al. DXA -equivalent quantification of bone mineral density using dual-layer spectral CT scout scans. Eur Radiol. 2019;29(9):4624-4634. doi: 10.1007/s00330-019-6005-6
- Engelke K., Lang T., Khosla S., Qin L., Zysset P., Leslie W.D. et al. Clinical Use of Quantitative Computed Tomography-Based Advanced Techniques in the Management of Osteoporosis in Adults: the 2015 ISCD Official Positions-Part III. J Clin Densitom. 2015;18(3):393-407. doi: 10.1016/j.jocd.2015.06.010.
- Петряйкин А.В., Сергунова К.А., Петряйкин Ф.А., Ахмад Е.С., Семенов Д.С., Владзимирский А.В. и др. Рентгеновская денситометрия, вопросы стандартизации (обзор литературы и экспериментальные данные). Радиология – практика. 2018;67(1):50-62.
- Svendsen O.L., Hassager C., Skødt V., Christiansen C. Impact of soft tissue on in vivo accuracy of bone mineral measurements in the spine, hip, and forearm: a human cadaver study. J Bone Miner Res. 1995;10(6): 868-873.
- Precision Assessment & Calculator FA Qs. Available from: https://www.iscd.org/resources/faqs/precision-assessment/.
- Carver T.E., Court O., Christou N.V., Reid R.E.R., Andersen R.E. Precision of the iDXA for visceral adipose tissue measurement in severely obese patients. Med Sci Sport Exerc. 2014;46(7):1462-1465.
- Saarelainen J., Hakulinen M., Rikkonen T., Kröger H., Tuppurainen M. Koivumaa-Honkanen H. et al. Cross-Calibration of GE Healthcare Lunar Prodigy and iDXA Dual-Energy X-Ray Densitometers for Bone Mineral Measurements. J Osteoporos. 2016;2016:1424582. doi: 10.1155/2016/1424582.
- Аврунин А.С., Тихилов Р.М., Шубняков И.И., Карагодина М.П., Плиев Д.Г., Товпич И.Д. Ошибка воспроизводимости аппаратно-программного комплекса Lunar Prodigy (version Encore) (Prodigy) при исследовании фантомов и костных структур. Гений ортопедии. 2010;4:104-110.
- Аврунин А.С., Павлычев А.А., Карагодина М.П., Шубняков И.И. Хронобиологические характеристики колебаний ошибки воспроизводимости метода двухэнергетической абсорбциометрии при определении проекционной минеральной плотности в зонах Груена. Медицинская визуализация. 2016;4:100-108.
- Аврунин А.С., Тихилов P.M., Шубняков И.И., Емельянов В.Г. Оценивает ли двухэнергетическая рентгеновская абсорбциометрия параметры физиологического обмена минерального матрикса? Гений ортопедии. 2008;1:41-49.
- Yu E.W., Bouxsein M.L., Roy A.E., Baldwin C., Cange A., Neer R.M. et al. Bone loss after bariatric surgery: discordant results between DXA and QCT bone density. J Bone Miner Res. 2014;29(3):542-550. doi: 10.1002/jbmr.2063.