Avulsion Fractures Osteosynthesis in Patients with Normal Bone Mineral Density and Osteoporosis

Cover Page


Cite item

Abstract

Objective: to compare the effectiveness of osteosynthesis for avulsion fractures using bioabsorbable versus titanium implants in patients differing in bone mineral density.

Material and Methods. In the experimental phase of study, two groups of bone blocks were singled out from patients' femoral heads to assess the anchoring properties of the implant in osteoporotic and healthy bone. The first group included blocks of 31 patients with osteoporosis, the second one — 27 blocks of patients without osteoporosis. In the first group, cortical bioabsorbable Poly-L-Lactic/ co-glycolic acid (PLGA) screws were implanted into 13 bone blocks, titanium screws — into 10 bone blocks, and bioabsorbable pins (PLGA) — into 8 bone blocks. In the second group, 10 titanium screws, 10 bioabsorbable screws and 7 bioabsorbable pins were implanted. The anchorage of the implant in bone was evaluated by a pull-out test. Then, depending on the anchorage used, the studied bone blocks with osteoporosis, newly obtained from the first group, were divided into three groups for the purpose of evaluating the resistance to the damaging effects of the implant. In experiment, the osteosynthesis for avulsion fracture was simulated on these bone blocks. In the first group (11 bone blocks), the transosseous osteosynthesis of the bone fragment was carried out with a titanium screw, in the second group (9 bone blocks) with a bioabsobable screw, in the third group (11 bone blocks) with a bioabsorbable pin. The results of osteosynthesis were assessed based on how often a small bone fragment was damaged by an implant and on stability of the anchored implant. In the clinical phase of study, a comparative analysis of 65 surgical interventions (38 people with osteoporosis and 27 without osteoporosis) in patients with avulsion fractures was performed. In 24 cases, bioabsorbable screws were used for osteosynthesis, AO/ASIF titanium screws were used in 31 cases, and pins were used in 10 cases.

Results. Experimental studies showed that the resistance to pull-out test of a bioabsorbable screw anchored in osteoporotic bone is 25.7% higher than a titanium screw. No statistically significant difference was found in bone without osteoporosis. Resistance to pull-out test of a bioabsorbable pin is 3% higher than a titanium screw. The model-based experiment with an avulsion fracture in osteoporotic bone using a titanium screw showed lower effectiveness of osteosynthesis: in 27.2% of cases the cortical titanium screw damaged a small bone fragment. Based on the clinical trial findings, no negative results were obtained using bioabsorbable anchorage. In 12.5% cases of osteosynthesis with a titanium screw, migration of a bone fragment was noted. The data obtained during the clinical study correlated with the experimental data. This makes the use of bioabsorbable implants advantageous.

Conclusion. For avulsion fracture osteosynthesis in patients with normal bone mineral density, it is possible to use both titanium and biodegradable fixators with equivalent strength of fragment fixation. n osteosynthesis of fractures in patients with osteoporosis it is preferable to use bioabsorbable implants

About the authors

L. B. Reznik

Omsk State Medical University

Email: fake@neicon.ru

Leonid В. Reznik — Dr. Sci. (Med.), professor, head of the Department Traumatology and Orthopedics

Omsk

Russian Federation

V. V. Guryev

Road Clinical Hospital at st. Lyubhno of Russian Railways

Email: fake@neicon.ru

Vladimir V. Guryev — Dr. Sci. (Med.), professor, head of the Trauma and Orthopedic Department, Semashko

Moscow

Russian Federation

M. A. Turushev

Omsk State Medical UniversityState Medical University

Author for correspondence.
Email: mturush20@mail.ru

Mikhail A. Turushev — Cand. Sci. (Med.), assistant. Department Traumatology and Orthopedics 

Omsk

Russian Federation

D. A. Negrov

Omsk State Technical University

Email: fake@neicon.ru

DmitriiA. Negrov — Cand. Sci. (Med.), assistant professor of Faculty Machine building and materiology

Omsk

Russian Federation

R E. Il’in

Noyabrsk Central City Hospital

Email: fake@neicon.ru

Roman E. Il’in — orthopedic surgeon 

Noyabrsk

Russian Federation

References

  1. Ахтямов И.Ф., Шакирова Ф.В., Гатина Э.Б., Манирамбона Ж.К., Алиев Э.И. Морфологическое исследование локального влияния имплантатов с покрытиями на основе сверхтвердых соединений на костную ткань в условиях индуцированной травмы. Гений ортопедии. 2015;(1):65-68. doi: 10.18019/1028-4427-2015-1-65-70.
  2. Bohyn J.D., РШіаг R.M., Cameron H.U., Weatherly G.C. The optimum pore size for the fixation of poroussurfaced metal implants by the ingrowth of bone. Clin Orthop Relat Res. 1980;(150) :263-270.
  3. Witte F. The history of biodegradable magnesium implants: a re-view. Acta Biomater. 2010;6(5):1680-1692. doi: 10.1016/j.actbio.2010.02.028.
  4. Rae Т. The toxicity of metals used in orthopaedic prostheses. An experimental study using cultured human synovial fihrohlasts. J Bone Joint Surg Br. 1981;63-B(3):435-440.
  5. Steinemarm S.G. Metal implants and surface reactions. Injury. 1996;(3):16-22. doi: 10.1016/0020-1383(96)89027-9.
  6. Карбышева С.Б., Григоричева Л.Г., Жильцов И.В. D-лактат — маркер бактериального воспаления нативных и протезированных суставов. Травматология и ортопедия России. 2017;(2):6-13. doi: 10.21823/2311-2905-2017-23-2-6-14.
  7. Wegmann K., Gick S., Heidemann C., Pennig D., Neiss W.F., Muller L.P. et al. Biomechanical evaluation of the primary stability of pedicle screws after augmentation with an innovative bone stabilizing system. Arch Orthop Trauma Surg. 2013;133(11):1493-1499. doi: 10.1007/S00402-013-1842-2.
  8. Luo Y.G., Yu T., Liu G.M., YangN. Study of bone-screw surface fixation in lumbar dynamic stabihzation. Chin Med J. 2015;128(3):368-372. doi: 10.4103/0366-6999.150107.
  9. Дулаев A.K., ЦедA.H,Джусоев И.Г.,Усубалиев K.H. Остеосинтез переломов шейки бедренной кости: динамический бедренный винт (DHS) или мини-инвазивная система Targon FN? Травматология и ортопедия России. 2015;(3):12-21. doi: 10.21823/2311-2905-2015-0-3-12-21.
  10. Gristina A.G. Biomateriał centered infection: microbial adhesion vs tissue integration. Science. 1987;(237):1588- 1595. doi: 10.1126/science.3629258.
  11. Антониади Ю.В., Волокитина E.A., Черницын Д.Н., Помогаева Е.В., Гилев М.В. Активная хирургическая тактика при лечении гнойно-воспалительных осложнений остеосинтеза околосуставных переломов. Вопросы травматологии и ортопедии. 2012;4(5):25-27.
  12. Hughes T.B. Bioabsorbable Implants in the Treatment of Hand Fractures: An Update. Clin Orthop. 2006;169-174. doi: 10.1097/01.blo.0000205884.81328.cc.
  13. Waris E., Konttinen Y.T., Ashammakhi N. Bioabsorbable fixation devices in trauma and bone surgery: current clinical standing. Expert Rev Med Devices. 2004; 1(2): 229-240. doi: 10.1586/17434440.1.2.229.
  14. Воронкевич И.А., Парфеев Д.Г., Конев B.A., Авдеев А.И. К вопросу о удалении имплантов, по мнению отечественных хирургов трав-матологов-ортопедов. Современные проблемы науки и образования. 2017;(6):112.
  15. Molster A., Behring J., Gjerdet N.R., Ekeland A. Removal of osteosynthetic implants. Tidsskr Nor Laegeforen. 2002;(122):2274-2276. (In Russ.).
  16. Miha M.J., Vincent A.B., Bosse M.J. Retrograde removal of an incarcerated soUd titanium femoral nail after subtrochanteric fracture. } Orthop Trauma. 2003;(17): 521-524. doi: 10.1097/00005131-200308000-00008.
  17. Головаха М.Л., Кожемяка M.A., Панченко С.П., Красовский В.Л. Оценка напряжения и деформации системы «кость — фиксатор» при накостном остеосинтезе переломов наружной лодыжки. Ортопедия, травматология и протезирование. 2014;(4):15. doi: 10.15674/0030-59872014414-19.
  18. Каллаев H.O., Лыжина Е.Л., Каллаев Т.Н. Сравнительный анализ оперативных методов лечения около- и внутрисуставных переломов и переломовывихов голеностопного сустава. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2004;5(4):32-35.
  19. Yunfeng L. Strontium ranelate treatment enhances hydroxyapatite-coated titanium screws fixation in osteoporotic rats. J Orthop Res. 2009;578-582. doi: 10.1002/jor.21050.
  20. Jones H.W., Johnston P., Parker M. Are short femoral nails superior to the sliding hip screw? A meta-analysis of 24 studies in volving 3,279 fractures. Clin Orthop. 2006;(2):69-78. doi: 10.1007/s00264-005-0028-0.
  21. Seemab M., Ansari U., Ali M.N., Rana N.F. Internal fixation: An evolutionary appraisal of methods used for long bone fractures. IJBAR. 2014;3(5):142-149. doi: 10.7439/ijbar.v5i3.627.
  22. Ларцев Ю.В., Шерешовец A.A. Особенности применения нового металлофиксатора для остеосинтеза при остеопении в исследовании на трупах. Наука и инновации в медицине. 2017;(3):28-30.
  23. Ганжа A.A., Гюльназарова С.В. О возможности пред- упреждения расшатывания имплантатов при остеосинтезе в условиях остеопороза. Современные проблемы науки и образования. 2017;(6):125-128.
  24. Lee M.C., Jo H., Bae T.S. Analysis of initial fixation strength of press-fit fixation technique in anterior cruciate hgament reconstruction. A com-parative study with titanium and bioabsorbable interference screw using porcine lower Hmb. Knee Surg Sports Traumatol Arthrosc. 2003;ll(2):91-98. doi: 10.1007/s00167-003-0351-l.
  25. Якимов Л.А., Слиняков Л.Ю., Бобров Д.С. Биодеградируемые импланты. Становление и развитие. Преимущества и недостатки. Кафедра травматологии и ортопедии. 2017;(1):44-47.
  26. Ibrahim A.M.S., Kuylhee K., Perrone G.S., Kaplan D.L., Lin S.J. Absorbable biologically based internal fixation. Clin Podiatr Med Surg. 2015;(32):61-72. doi: 10.1016/j.cpm.2014.09.009.
  27. Macarini L., Murrone M., Marini S. [MRl in ACL reconstructive surgery with PDLLA bioabsorbable interference screws: evaluation of degradation and osteointegration processes of bioabsorbable screws]. Radiol Med. 2004;107(l-2):47-57. (inltal).
  28. Eglin D., Alini M. Degradable polymeric materials for osteosynthesis: tutorial. Eur Cell Mater. 2008;80-91. ВЩШ: 10.22203/ecm.v016a09.
  29. Беленький И.Г., Сергеев Г.Д., Гудзь Ю.В., Григорян Ф.С. История, современное состояние и перспективы развития методов накостного остеосинтеза. Современные проблемы науки и образования. 2016;(5):77.
  30. Backman D., Uhthoff H., Poitras P., Schwamberger A. Mechanical performance of a fracture plate incorporating bioresorbable inserts. J Bone Joint Surg. 2004;86(Suppl 3):300.
  31. Рюди Т.П, Бакли Р.Э, Моран К.Г. АО — принципы лечения переломов. Т. 1. Минск: Васса Медиа; 2013.470 с.
  32. Thiele O.C, Eckhardt C, Linke В; Eactors affecting the stability cortical osteoporotic bone. J Bone Joint Surg Br. 2007;(89):701-705.
  33. Kroeber M.W., Rovinsky D., Haskell A., Heilmarm M., Llotz J., Otsuka N. Biomechanical testingofbioabsorbable carmulated screws for slipped capital femoral epiphysis fixation. Orthopedics. 2002;25(6):659-662

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 82474 от 10.12.2021.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies