Avulsion Fractures Osteosynthesis in Patients with Normal Bone Mineral Density and Osteoporosis
- 作者: Reznik L.B.1, Guryev V.V.2, Turushev M.A.3, Negrov D.A.4, Il’in RE.5
-
隶属关系:
- Omsk State Medical University
- Road Clinical Hospital at st. Lyubhno of Russian Railways
- Omsk State Medical UniversityState Medical University
- Omsk State Technical University
- Noyabrsk Central City Hospital
- 期: 卷 24, 编号 4 (2018)
- 页面: 72-80
- 栏目: Clinical studies
- ##submission.dateSubmitted##: 28.12.2018
- ##submission.datePublished##: 28.12.2018
- URL: https://journal.rniito.org/jour/article/view/1099
- DOI: https://doi.org/10.21823/2311-2905-2018-24-4-72-80
- ID: 1099
如何引用文章
详细
Objective: to compare the effectiveness of osteosynthesis for avulsion fractures using bioabsorbable versus titanium implants in patients differing in bone mineral density.
Material and Methods. In the experimental phase of study, two groups of bone blocks were singled out from patients' femoral heads to assess the anchoring properties of the implant in osteoporotic and healthy bone. The first group included blocks of 31 patients with osteoporosis, the second one — 27 blocks of patients without osteoporosis. In the first group, cortical bioabsorbable Poly-L-Lactic/ co-glycolic acid (PLGA) screws were implanted into 13 bone blocks, titanium screws — into 10 bone blocks, and bioabsorbable pins (PLGA) — into 8 bone blocks. In the second group, 10 titanium screws, 10 bioabsorbable screws and 7 bioabsorbable pins were implanted. The anchorage of the implant in bone was evaluated by a pull-out test. Then, depending on the anchorage used, the studied bone blocks with osteoporosis, newly obtained from the first group, were divided into three groups for the purpose of evaluating the resistance to the damaging effects of the implant. In experiment, the osteosynthesis for avulsion fracture was simulated on these bone blocks. In the first group (11 bone blocks), the transosseous osteosynthesis of the bone fragment was carried out with a titanium screw, in the second group (9 bone blocks) with a bioabsobable screw, in the third group (11 bone blocks) with a bioabsorbable pin. The results of osteosynthesis were assessed based on how often a small bone fragment was damaged by an implant and on stability of the anchored implant. In the clinical phase of study, a comparative analysis of 65 surgical interventions (38 people with osteoporosis and 27 without osteoporosis) in patients with avulsion fractures was performed. In 24 cases, bioabsorbable screws were used for osteosynthesis, AO/ASIF titanium screws were used in 31 cases, and pins were used in 10 cases.
Results. Experimental studies showed that the resistance to pull-out test of a bioabsorbable screw anchored in osteoporotic bone is 25.7% higher than a titanium screw. No statistically significant difference was found in bone without osteoporosis. Resistance to pull-out test of a bioabsorbable pin is 3% higher than a titanium screw. The model-based experiment with an avulsion fracture in osteoporotic bone using a titanium screw showed lower effectiveness of osteosynthesis: in 27.2% of cases the cortical titanium screw damaged a small bone fragment. Based on the clinical trial findings, no negative results were obtained using bioabsorbable anchorage. In 12.5% cases of osteosynthesis with a titanium screw, migration of a bone fragment was noted. The data obtained during the clinical study correlated with the experimental data. This makes the use of bioabsorbable implants advantageous.
Conclusion. For avulsion fracture osteosynthesis in patients with normal bone mineral density, it is possible to use both titanium and biodegradable fixators with equivalent strength of fragment fixation. n osteosynthesis of fractures in patients with osteoporosis it is preferable to use bioabsorbable implants
作者简介
L. Reznik
Omsk State Medical University
Email: fake@neicon.ru
Leonid В. Reznik — Dr. Sci. (Med.), professor, head of the Department Traumatology and Orthopedics
Omsk
俄罗斯联邦V. Guryev
Road Clinical Hospital at st. Lyubhno of Russian Railways
Email: fake@neicon.ru
Vladimir V. Guryev — Dr. Sci. (Med.), professor, head of the Trauma and Orthopedic Department, Semashko
Moscow
俄罗斯联邦M. Turushev
Omsk State Medical UniversityState Medical University
编辑信件的主要联系方式.
Email: mturush20@mail.ru
Mikhail A. Turushev — Cand. Sci. (Med.), assistant. Department Traumatology and Orthopedics
Omsk
俄罗斯联邦D. Negrov
Omsk State Technical University
Email: fake@neicon.ru
DmitriiA. Negrov — Cand. Sci. (Med.), assistant professor of Faculty Machine building and materiology
Omsk
俄罗斯联邦R Il’in
Noyabrsk Central City Hospital
Email: fake@neicon.ru
Roman E. Il’in — orthopedic surgeon
Noyabrsk
俄罗斯联邦参考
- Ахтямов И.Ф., Шакирова Ф.В., Гатина Э.Б., Манирамбона Ж.К., Алиев Э.И. Морфологическое исследование локального влияния имплантатов с покрытиями на основе сверхтвердых соединений на костную ткань в условиях индуцированной травмы. Гений ортопедии. 2015;(1):65-68. doi: 10.18019/1028-4427-2015-1-65-70.
- Bohyn J.D., РШіаг R.M., Cameron H.U., Weatherly G.C. The optimum pore size for the fixation of poroussurfaced metal implants by the ingrowth of bone. Clin Orthop Relat Res. 1980;(150) :263-270.
- Witte F. The history of biodegradable magnesium implants: a re-view. Acta Biomater. 2010;6(5):1680-1692. doi: 10.1016/j.actbio.2010.02.028.
- Rae Т. The toxicity of metals used in orthopaedic prostheses. An experimental study using cultured human synovial fihrohlasts. J Bone Joint Surg Br. 1981;63-B(3):435-440.
- Steinemarm S.G. Metal implants and surface reactions. Injury. 1996;(3):16-22. doi: 10.1016/0020-1383(96)89027-9.
- Карбышева С.Б., Григоричева Л.Г., Жильцов И.В. D-лактат — маркер бактериального воспаления нативных и протезированных суставов. Травматология и ортопедия России. 2017;(2):6-13. doi: 10.21823/2311-2905-2017-23-2-6-14.
- Wegmann K., Gick S., Heidemann C., Pennig D., Neiss W.F., Muller L.P. et al. Biomechanical evaluation of the primary stability of pedicle screws after augmentation with an innovative bone stabilizing system. Arch Orthop Trauma Surg. 2013;133(11):1493-1499. doi: 10.1007/S00402-013-1842-2.
- Luo Y.G., Yu T., Liu G.M., YangN. Study of bone-screw surface fixation in lumbar dynamic stabihzation. Chin Med J. 2015;128(3):368-372. doi: 10.4103/0366-6999.150107.
- Дулаев A.K., ЦедA.H,Джусоев И.Г.,Усубалиев K.H. Остеосинтез переломов шейки бедренной кости: динамический бедренный винт (DHS) или мини-инвазивная система Targon FN? Травматология и ортопедия России. 2015;(3):12-21. doi: 10.21823/2311-2905-2015-0-3-12-21.
- Gristina A.G. Biomateriał centered infection: microbial adhesion vs tissue integration. Science. 1987;(237):1588- 1595. doi: 10.1126/science.3629258.
- Антониади Ю.В., Волокитина E.A., Черницын Д.Н., Помогаева Е.В., Гилев М.В. Активная хирургическая тактика при лечении гнойно-воспалительных осложнений остеосинтеза околосуставных переломов. Вопросы травматологии и ортопедии. 2012;4(5):25-27.
- Hughes T.B. Bioabsorbable Implants in the Treatment of Hand Fractures: An Update. Clin Orthop. 2006;169-174. doi: 10.1097/01.blo.0000205884.81328.cc.
- Waris E., Konttinen Y.T., Ashammakhi N. Bioabsorbable fixation devices in trauma and bone surgery: current clinical standing. Expert Rev Med Devices. 2004; 1(2): 229-240. doi: 10.1586/17434440.1.2.229.
- Воронкевич И.А., Парфеев Д.Г., Конев B.A., Авдеев А.И. К вопросу о удалении имплантов, по мнению отечественных хирургов трав-матологов-ортопедов. Современные проблемы науки и образования. 2017;(6):112.
- Molster A., Behring J., Gjerdet N.R., Ekeland A. Removal of osteosynthetic implants. Tidsskr Nor Laegeforen. 2002;(122):2274-2276. (In Russ.).
- Miha M.J., Vincent A.B., Bosse M.J. Retrograde removal of an incarcerated soUd titanium femoral nail after subtrochanteric fracture. } Orthop Trauma. 2003;(17): 521-524. doi: 10.1097/00005131-200308000-00008.
- Головаха М.Л., Кожемяка M.A., Панченко С.П., Красовский В.Л. Оценка напряжения и деформации системы «кость — фиксатор» при накостном остеосинтезе переломов наружной лодыжки. Ортопедия, травматология и протезирование. 2014;(4):15. doi: 10.15674/0030-59872014414-19.
- Каллаев H.O., Лыжина Е.Л., Каллаев Т.Н. Сравнительный анализ оперативных методов лечения около- и внутрисуставных переломов и переломовывихов голеностопного сустава. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2004;5(4):32-35.
- Yunfeng L. Strontium ranelate treatment enhances hydroxyapatite-coated titanium screws fixation in osteoporotic rats. J Orthop Res. 2009;578-582. doi: 10.1002/jor.21050.
- Jones H.W., Johnston P., Parker M. Are short femoral nails superior to the sliding hip screw? A meta-analysis of 24 studies in volving 3,279 fractures. Clin Orthop. 2006;(2):69-78. doi: 10.1007/s00264-005-0028-0.
- Seemab M., Ansari U., Ali M.N., Rana N.F. Internal fixation: An evolutionary appraisal of methods used for long bone fractures. IJBAR. 2014;3(5):142-149. doi: 10.7439/ijbar.v5i3.627.
- Ларцев Ю.В., Шерешовец A.A. Особенности применения нового металлофиксатора для остеосинтеза при остеопении в исследовании на трупах. Наука и инновации в медицине. 2017;(3):28-30.
- Ганжа A.A., Гюльназарова С.В. О возможности пред- упреждения расшатывания имплантатов при остеосинтезе в условиях остеопороза. Современные проблемы науки и образования. 2017;(6):125-128.
- Lee M.C., Jo H., Bae T.S. Analysis of initial fixation strength of press-fit fixation technique in anterior cruciate hgament reconstruction. A com-parative study with titanium and bioabsorbable interference screw using porcine lower Hmb. Knee Surg Sports Traumatol Arthrosc. 2003;ll(2):91-98. doi: 10.1007/s00167-003-0351-l.
- Якимов Л.А., Слиняков Л.Ю., Бобров Д.С. Биодеградируемые импланты. Становление и развитие. Преимущества и недостатки. Кафедра травматологии и ортопедии. 2017;(1):44-47.
- Ibrahim A.M.S., Kuylhee K., Perrone G.S., Kaplan D.L., Lin S.J. Absorbable biologically based internal fixation. Clin Podiatr Med Surg. 2015;(32):61-72. doi: 10.1016/j.cpm.2014.09.009.
- Macarini L., Murrone M., Marini S. [MRl in ACL reconstructive surgery with PDLLA bioabsorbable interference screws: evaluation of degradation and osteointegration processes of bioabsorbable screws]. Radiol Med. 2004;107(l-2):47-57. (inltal).
- Eglin D., Alini M. Degradable polymeric materials for osteosynthesis: tutorial. Eur Cell Mater. 2008;80-91. ВЩШ: 10.22203/ecm.v016a09.
- Беленький И.Г., Сергеев Г.Д., Гудзь Ю.В., Григорян Ф.С. История, современное состояние и перспективы развития методов накостного остеосинтеза. Современные проблемы науки и образования. 2016;(5):77.
- Backman D., Uhthoff H., Poitras P., Schwamberger A. Mechanical performance of a fracture plate incorporating bioresorbable inserts. J Bone Joint Surg. 2004;86(Suppl 3):300.
- Рюди Т.П, Бакли Р.Э, Моран К.Г. АО — принципы лечения переломов. Т. 1. Минск: Васса Медиа; 2013.470 с.
- Thiele O.C, Eckhardt C, Linke В; Eactors affecting the stability cortical osteoporotic bone. J Bone Joint Surg Br. 2007;(89):701-705.
- Kroeber M.W., Rovinsky D., Haskell A., Heilmarm M., Llotz J., Otsuka N. Biomechanical testingofbioabsorbable carmulated screws for slipped capital femoral epiphysis fixation. Orthopedics. 2002;25(6):659-662