PDGF ENZYMATIC ACTIVITY IN PATIENTS WITH DELAYED FRACTURE CONSOLIDATION

Cover Page


Cite item

Abstract

Introduction. Techniques that use growth factors to improve bone fragment consolidation and to treat the inflammatory and degenerative diseases of the musculoskeletal system have become very popular. Many researchers are actively searching for personification of this therapy and the reasons for delayed consolidation. The purpose of the study – to identify the biomarker for delayed bone consolidation.

Materials and Methods. The study groups consisted of patients with high-energy tibia open fractures with normal (group 1) and with delayed (2nd group) consolidation of bone fragments. The enzymatic activity of platelet-derived growth factor (PDGF) in blood serum was studied after 7 days and in 1, 3 and 6 months after bone fragments reduction. Spectrophotometric technique (Specord-200) was used.

Results. In patients with normal consolidation of bone fragments, the enzymatic activity of PDGF was statistically significantly higher in comparison with the group with delayed healing. At the same time, the highest activity was reported on day 7, and by third month it was becoming lower.

Conclusion. Bone healing depends on PDGF enzymatic activity, besides significant differences on various stages of healing were observed. Further study the reasons for the PDGF enzymatic deficiency and its correction are of a great interest for reducing the timing of consolidation.

About the authors

D. V. Kuzmenko

Maxim Gorky Donetsk State Medical University

Author for correspondence.
Email: fake@neicon.ru

Dmitry V. Kuzmenko — Graduate Student, Тraumatology and Оrthopedics Department.

16, pr. Il’icha, Donetsk Russian Federation

G. V. Lobanov

Maxim Gorky Donetsk State Medical University

Email: fake@neicon.ru

Gregory V. Lobanov — Dr. Sci. (Med.), Professor, Head of Тraumatology and Оrthopedics Department.

16, pr. Il’icha, Donetsk Russian Federation

O. P. Shatova

Maxim Gorky Donetsk State Medical University

Email: shatova.op@gmail.com

Olga P. Shatova — Cand. Sci. (Med.), Head of Biological Chemistry Department.

16, pr. Il’icha, Donetsk Russian Federation

References

  1. Лаврищева Г.И., Оноприенко Г.А. Морфологические и клинические аспекты репаративной регенерации опорных органов и тканей. М. : Медицина, 1996. 208 с. Lavrishcheva G.I., Onoprienko G.A. Morfologicheskie i klinicheskie aspekty reparativnoi regeneratsii opornykh organov i tkanei [Morphological and clinical aspects of reparative regeneration of supporting organs and tissues]. Moscow : Medicine, 1996. 208 р.
  2. Majidinia M., Sadeghpour A., Yousefi B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol. 2017. doi: 10.1002/jcp.26042. [Epub ahead of print].
  3. Fischer C., Doll J., Tanner M., Bruckner T., Zimmermann G., Helbig L., Biglari B., Schmidmaier G., Moghaddam A. Quantification of TGF-ss1, PDGF and IGF-1 cytokine expression after fracture treatment vs. non-union therapy via masquelet. Injury. 2016; 47 (2):342-349. doi: 10.1016/j.injury.2015.11.007.
  4. Bayer E.A., Jordan J., Roy A., Gottardi R., Fedorchak M.V., Kumta P.N., Little S.R. programmed platelet-derived growth factor-BB and bone morphogenetic protein-2 delivery from a hybrid calcium phosphate alginate scaffold. Tissue Eng Part A. 2017. [Epub ahead of print]. doi: 10.1089/ten.TEA.2017.0027.
  5. Kim J.H., Oh S.H., Min H.K., Lee J.H. Dual growth factor-immobilized asymmetrically porous membrane for bone-to-tendon interface regeneration on rat patellar tendon avulsion model. J Biomed Mater Res A. 2018.106(1):115-125. doi: 10.1002/jbm.a.36212.
  6. Kirby G.T., White L.J., Steck R., Berner A., Bogoevski K., Qutachi O., Jones B., Saifzadeh S., Hutmacher D.W., Shakesheff K.M., Woodruff M.A. Microparticles for sustained growth factor delivery in the regeneration of critically-sized segmental tibial bone defects. Materials (Basel). 2016;9(4):E259. doi: 10.3390/ma9040259.
  7. Elamin Y.Y., Rafee S., Osman N., KJ O.B., Gately K. Thymidine Phosphorylase in Cancer; Enemy or Friend? Cancer Microenviron. 2016; 9(1):33-43. doi: 10.1007/s12307-015-0173-y
  8. Tabata S., Yamamoto M., Goto H., Hirayama A., Ohishi M., Kuramoto T., Mitsuhashi A., Ikeda R., Haraguchi M., Kawahara K., Shinsato Y., Minami K., Saijo A., Hanibuchi M., Nishioka Y., Sone S., Esumi H., Tomita M., Soga T., Furukawa T., Akiyama SI. Thymidine catabolism as a metabolic strategy for cancer survival. Cell Rep. 2017; 19 (7):1313-1321. doi: 10.1016/j.celrep.2017.04.061.
  9. Li Q., Niu Y., Diao H., Wang L., Chen X., Wang Y., Dong L., Wang C. In situ sequestration of endogenous PDGF-BB with an ECM-mimetic sponge for accelerated wound healing. Biomaterials. 2017;148:54-68. doi: 10.1016/j.biomaterials.2017.09.028.
  10. Miszczak-Zaborska E., Wójcik-Krowiranda K., Kubiak R., Bieńkiewicz A., Bartkowiak J. The activity of thymidine phosphorylase as a new ovarian tumor marker. Gynecol Oncol. 2004 Jul;94(1):86-92. doi: 10.1016/j.ygyno.2004.04.011
  11. Borzenko B.G., Bakurova E.M., Popovich Yu.A., Sidyuk E.A., Popovich A.Y. Activity of thymidilate «salvage pathway» enzymes in human gastric cancer and blood serum correlationwith treatment modalities. Experimental Oncology. 2013;35(1): 37-40.
  12. Janion C., Shugar D. Thymidine phosphorylase and other enzymes in regenerating rat liver. Acta Biochim Pol. 1961; 8:337-344.
  13. Li J., Jahr H., Zheng W., Ren P.G. Visualizing angiogenesis by multiphoton microscopy in vivo in genetically modified 3D-PLGA/nHAp scaffold for calvarial critical bone defect repair. J Vis Exp. 2017;(127). doi: 10.3791/55381.

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies