Cover Page

Cite item


For the treatment of patients with multilevel deformities when there are contraindications for an acute single step correction the external fixation should be applied including orthopedic hexapods. At the same time a separate orthopedic hexapod is used for each level of deformity. This leads to a significant bulkiness of the overall frame assembly. Calculation of deformity correction in the presence of an intermediate fragment (fragments) and practical implementation of correction represent by no means a simple task.

Purpose of the study – to perform a clinical approbation of “spring” technique for multilevel correction of long bones deformities and to evaluate the results.

Materials and methods. The authors developed an original technique for correcting multilevel deformities using a single orthopedic hexapod. During the procedure the hexapod struts are fixed only to the proximal and distal rings, and the intermediate ring (rings) is fixed to the adjacent supports using the springs – a so-called “spring” technique. The new method has been successfully tested in the treatment of 7 patients with 2 and 3-level deformities of long bones.

Results. The reported correction accuracy was 97.6%. The fixation period averaged 47 weeks (from 37 to 54 weeks). In 2 cases the authors observed soft tissues inflammation around of transosseous elements eradicated by the administration of antibiotics. In one patient with post-traumatic deformity a premature consolidation was observed at one of the levels which required re-osteotomy with further correction using two hexapods.

Conclusion. Preliminary results demonstrated that the use of simultaneous correction of deformities at several levels applying one orthopedic hexapod Ortho-SUV and springs simplifies correction calculations, provides optimal timing for deformity correction while maintaining the minimal frame dimensions.

About the authors

L. N. Solomin

Vreden Russian Research Institute of Traumatology and Orthopedics;
Saint Petersburg State University

Leonid N. Solomin — Dr. Sci. (Med.), Professor, Head of Functional Group of External Fixation, Vreden Russian Research Institute of Traumatology and Orthopedics; Professor of the Surgery Chair, Medical Faculty, St. Petersburg State University Russian Federation

E. A. Shchepkina

Vreden Russian Research Institute of Traumatology and Orthopedics;
Pavlov First Saint Petersburg State Medical University

Elena A. Shchepkina – Cand. Sci. (Med.), Senior Researcher, Vreden Russian Research Institute of Traumatology and Orthopedics; Associate Professor, Department of Traumatology and Orthopedics, Pavlov First Saint Petersburg State Medical University Russian Federation

K. L. Korchagin

Vreden Russian Research Institute of Traumatology and Orthopedics

Konstantin L. Korchagin — Researcher Assistant Russian Federation

F. K. Sabirov

Vreden Russian Research Institute of Traumatology and Orthopedics

Author for correspondence.
Fanil K. Sabirov – Cand. Sci. (Med.), Junior Lecturer, Department of Traumatology and Orthopedics Russian Federation

M. Takata

Ishikawa Prefectural Central Hospital


Munetomo Takata MD, PhD, Orthopedic Surgeon



H. Tsuchiya

Kanazawa University


Hiroyuki Tsuchiya — MD, PhD, Orthopedic Surgeоn, Department of Orthopaedic Surgery, Graduate School of Medical Science




  1. Соломин, Л.Н. Основы чрескостного остеосинтеза. М.: БИНОМ; 2015. Т. 3. Гл. 2. с. 780-847. Solomin L.N. Osnovy chreskostnogo osteosinteza [Basic principles of external fixation]. Moscow: BINOM; 2015. Vol. 3. Ch. 2. рр. 780-847. (in Russian).
  2. Solomin L.N., Paley D., Shchepkina E.A., Vilensky V.A., Skomoroshko P.V. A comparative study of the correction of femoral deformity between the Ilizarov apparatus and Ortho-SUV Frame. Int Orthop. 2014;(38):865-872. doi: 10.1007/s00264-013-2247-0.
  3. Dammerer D., Kirsch. Clinical value of the Taylor Spatial Frame: a comparison with the Ilizarov and Orthofix fixators. J Child Orthop. 2011;(5):343-349. doi: 10.1007/s11832-011-0361-3.
  4. Manner H.M., Huebl M., Radler C., Ganger R., Petje G., Grill F. Accuracy of complex lower-limb deformity correction with external fixation: a comparison of the Taylor Spatial Frame with the Ilizarov ring fixator. J Child Orthop. 2007;(1):55-61. doi: 10.1007/s11832-006-0005-1.
  5. Мыцыков Р.Ю., Соломин Л.Н., Машталов В.Д., Серебрянников Н.В., Любимов Н.Д. Опыт применения аппарата внешней фиксации со свойствами пассивной компьютерной навигации для лечения больных с деформациями длинных трубчатых костей. Главный врач юга России. 2017;(2):17-21. Mytsykov R.Yu, Solomin L.N, Mashtalov V.D. Serebryannikov N.V., Lubimov N.D. [The experience of using an external fixation device with the properties of passive computer navigation for the treatment of patients with deformation of long tubular bones]. Glavnyi vrach Yuga Rossii [The Head Doctor of Southern Russia]. 2017;(2):17-21. (in Russian).
  6. Eidelman M., Bialik V., Katzman A. Correction of deformities in children using the Taylor spatial frame. J Pediatr Orthop B. 2006;15(6):387-395. doi: 10.1097/01.bpb.0000228380.27239.8a.
  7. Koren L., Keren Y., Eidelman M. Multiplanar deformities correction using Taylor Spatial Frame in Skeletally immature patients. Open Orthop J. 2016;(10):71-79.
  8. Paley D. Principles of Deformity Correction. Ed 1. Berlin, Germany: Springer-Verlag; 2002. 806 р.
  9. W atanabe K., Tsuchiya H., Sakurakichi K., Matsubara H., Tomita K. Double-level correction with the Taylor Spatial Frame for shepherd’s crook deformity in fibrous dysplasia. J Orthop Sci. 2007;(12):390-394. doi: 10.1007/s00776-007-1132-3.

Copyright (c)

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 82474 от 10.12.2021.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies