INFLUENCE OF THE SKELETON HIERARCHICAL ORGANIZATION ON ELECTRONIC STATE OF IONS IN BONE MATRIX

Cover Page


Cite item

Abstract

The authors suggested the 3D-superlattice (3DSL) model to describe the effect of coplanar assembly of the hydroxyapatite (HA) nanocrystallites on local electronic state of ions in mineralized bone. This model is based on the main structural and functional relationships between adjacent levels of the hierarchical organization of bone tissue. In the framework of the 3DSL model the authors predicted the distinct assembly-to-crystal red shift of the unoccupied electronic states located near the bottom of the conduction band in HA and dependence of this shift on the ratio of the thickness of the hydrated layer to the crystallite size. To check these predictions the experimental X-ray absorption studies of native bone are performed near the Ca2р1/2,3/2-, P2р1/2,3/2- и O1s edges. Comparison of the measured spectra with the known spectra of the reference compounds has confirmed appearance of the distinct assembly-to-crystal red shift. The observed effect is the ground for development of new diagnostic methods for bone status and imaging changes in the local electronic structure of bone tissue by using ultrasoft X-ray absorption spectroscopy and measuring the assembly-tocrystal shifts. The experimental data analysis proved the applicability of the 3DSL model for better understanding of the hierarchical organization of bone at nanolevel.

About the authors

A. S. Avrunin

Vreden Russian Research Institute of Traumatology and Orthopedics
8, ul. Akad. Baykova, St. Petersburg, 195427, Russia

Author for correspondence.
Email: a_avrunin@mail.ru
Dr. Sci. (Med) Senior Researcher of the Scientific Department of the Diagnosis and Treatment of Musculoskeletal System Diseases and Injuries Russian Federation

A. A. Pavlychev

Saint-Petersburg State University 7-9, Universitetskaya nab., St. Petersburg, 199034, Russia

Email: a_avrunin@mail.ru
Dr. Sci. (Phys.-Math) Professor, Solid State Electronics Department, Faculty of Physics Russian Federation

A. A. Doctorov

All-Russian Research Institute of Medical and Aromatic Plants
7, str. 1, ul. Grina, Moscow, 117216, Russia

Email: a_avrunin@mail.ru
Dr. Sci. (Med) Professor the Head of Morphology Department Russian Federation

A. S. Vinogradov

Saint-Petersburg State University 7-9, Universitetskaya nab., St. Petersburg, 199034, Russia

Email: a_avrunin@mail.ru
Dr. Sci. (Phys.-Math) Professor, Solid State Electronics Department, Faculty of Physics Russian Federation

D. O. Samoilenko

Saint-Petersburg State University 7-9, Universitetskaya nab., St. Petersburg, 199034, Russia

Email: a_avrunin@mail.ru
Master Student, Faculty of Physics Russian Federation

G. I. Svirsky

Saint-Petersburg State University 7-9, Universitetskaya nab., St. Petersburg, 199034, Russia

Email: a_avrunin@mail.ru
Master Student, Faculty of Physics Russian Federation

References

  1. Аврунин А.С., Тихилов Р.М, Аболин А.Б., Щербак И.Г. уровни организации минерального матрикса костной ткани и механизмы, определяющие параметры их формирования. Морфология. 2005;127 (2):78-82.
  2. Аврунин А.С., Тихилов Р.М., Паршин Л.К., Шубняков И.И. Наноуровневый механизм жесткости и прочности кости. Травматология и ортопедия России. 2008; 2(48):77-83.
  3. Аврунин А.С., Тихилов Р.М., Шубняков И.И. Паршин Л.А., Мельников Б.Е., Плиев Д.Г. Иерархия спиралной организации структур скелета. Взаимосвязь строения и функции. Морфология. 2010; 134 (6):69-75.
  4. Аврунин А.С., Денисов-Никольский Ю.И., Докторов А.А., Кривосенко Ю.А, Самойленко Д.О., Павлычев А.А., Шубняков И.И. Влияние воды, различных включений и замещений на физико-химические свойства биоапатита и механические свойства минерализованных тканей. Травматология и ортопедия России. 2015; (3):37-50.
  5. Бабиков В.В. Метод фазовых функций в квантовой механике, М.: Наука; 1976. 287 с.
  6. Денисов-Никольский Ю.И., Миронов С.П., Омельяненко Н.П., Матвейчук И.В. Актуальные проблемы теоретической и клинической остеоартрологии. М., Новости, 2005. 336 с.
  7. Жилкин Б.А., Денисов-Никольский Ю.И., Докторов А.А. Особенности строения пластинчатой кости позвонков человека при возрастной инволюции и остеопорозе. Успехи современной биологии, 2003;123(6): 590-598.
  8. Келдыш Л.В., Свойства полупроводниковых сверхрешеток. ФТТ. 1962;4(8):2265-2267.
  9. павлычев А.А. Виноградов А.С., Зимкина Т.М., Онопко Д.Е., Титов С.А. Структура рентгеновских спектров поглощения тетраэдрических молекул. SiLII,III и FK-спектры молекулы SiF4. Опт. спектроскопия. 1982; 52(3)506-509.
  10. Павлычев А.А., Виноградов А.С., Степанов А.П., Шулаков А.С. Динамические эффекты формирования локализованных состояний в ультрамягкой рентгеновской области спектра. Опт. спектроскопия. 1993; 75(3):554-578.
  11. Aziz E.F., Ottosson N., Faubel M., Hertel I.V., Winter B. Interaction between liquid water and hydroxide revealed by core-hole de-excitation. Nature. 2008; 455:89-91.
  12. Brühwiler P.A., Maxwell A.J., Nilsson A., Whetten R.L., Mårtensson N. Resonant photoemission of solid C60. Chem Phys Lett. 1992;193:311-316.
  13. Cappa C.D., Smith J.D., Messer B.M., Cohen R.C., Saykally R.J. Effect of cations on the hydrogen bond network of liquid water: new results from x-ray absorption spectroscopy of liquid microjets. J Phys Chem B. 2006; 110:5301-5309.
  14. Fantner G.E., Hassenkam T., Kindt J.H., Weaver J.С., Birkedal H., Pechenik L., Cutroni J.A., Cidade G.A.G., Stucky G.D., Morse D.E., Hansma P.K. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nature materials. 2005; 41(8):612-616.
  15. Headrick J.M., Diken E.G., Walters R.S., Hammer N.I., Christie R.A., Cui J., Mishakin E.M., Duncan M.A., Johnson M.A., Jordan K.D. Spectral signatures of hydrated proton vibrations in water clusters. Science. 2005; 308: 1765-1769.
  16. Heine V. Solid State Physics. Adv res Appl. 1970;24:1-36.
  17. Loong C.-K., Rey C., Kuhn L.T., Combes C., Wu Y., Chen S.-H., Glimch M.J. Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study. Bone. 2000;26(6):599-602.
  18. Matsunaga K., Kuwabara A. first-principles study of vacancy formation in hydroxyapatite. Phys rev B. 2007; 75:014102.
  19. Movasaghi Z., Rehman S., Rehman I. Fourier transform infrared (fTIR) spectroscopy of biological tissues. Applied Spectroscopy rev. 2008; 43(2):134-179.
  20. Naftela S.J., Sham T.K., yiua y.M., Yates B.W. J. Calcium L-edge xANES of some calcium compounds. Synchrotron rad. 2001;8(2):255-257.
  21. Olszta M.J., Odom D.J., Douglas E.P., Gower L.B. A new paradigm for biomineral formation: mineralization via an amorphous liquid-phase precursor. Connective Tissue res. 2003; 44 (Suppl. 1):326-334.
  22. Pasteris J.D., Yoder C.H., Wopenka B. Molecular water in nominally unhydrated carbonated hydroxylapatite: The key to a better understanding of bone mineral. Am Mineralogist. 2014;99:16-27.
  23. Rajendran J., Gialanella S., Aswath P. B XANES analysis of dried and calcined bones. Materials Science and Engineering C. 2013;33(7):3968-3979.
  24. Rey C., Miquel J.L., Facchini L., Legrand A.P., Glimcher M.J. Hydroxyl groups in bone mineral. Bone. 1995; 16(5):583-586.
  25. Robertson W.H., Diken E.G., Price E.A., Shin J.W., Johnson M.A. Spectroscopic determination of the OH- solvation shell in the OH-.(H2O)n clusters. Science. 2003; 299:1367-1372.
  26. Rulis P., Ouyang L., Ching W.Y. Electronic structure and bonding in calcium apatite crystals: Hydroxyapatite, fluorapatite, chlorapatite, and bromapatite. Physical rev В. 2004;70,155104-1-7.
  27. Taylor A.J., Rendina E., Smith B.J., Zhou D.H. Analyses of mineral specific surface area and hydroxyl substitution for intact bone. Chem Phys Letters. 2013;588:124-130.
  28. Tong W., Glimcher M.J., Katz J.L., Kuhn L., Eppell S.J. Size and shape of mineralites in young bovine bone measured by atomic force microscopy. Calcif Tissue Int. 2003;72(5):592-598.
  29. Vinogradov A.S., Fedoseenko S.I., Krasnikov S.A., Preobrajenski A.B., Sivkov V.N., Vyalikh D.V., Molodtsov S.L., Adamchuk V.K., Laubschat C., Kaindl G. Kow-lying unoccupied electronic states in 3d transition-metals fluorides probed by NEXAFS at the F1s threshold. Phys rev. B. 2005; 71:045124.
  30. Wopenka B., Pasteris J.D. A mineralogical perspective on the apatite in bone. Materials Science and Engineering C. 2005;25(2):131-143.
  31. Yin Z., Kasrai M., Banckroft G.M., Tan K.H., Feng X. X-ray-absorption spectroscopic studies of sodium polyphosphate glasses. Phys rev B. 1995;51:742-750.

Copyright (c) 2016



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies