Influence of the mineral bond between associations of crystallites on bone matrix mechanical properties. modeling by the finite element method

Cover Page


Cite item

Full Text

Abstract

For the first time on the basis of computer modeling using the finite element method the mechanical role of mineral compounds, binding all of the bone minerals in the whole monolith was evaluated. By multivariate computational experiments the authors established the qualitative features and obtained the quantitative assessment of the influence of the bridges on the stiffness and stress-strain state of the representative volume element (RVE). The effective elastic moduli of the nanocomposite bone RVE were estimated by the of finite element homogenization method taking into account the availability of bridges. The presence of the bridge enhances bone stiffness regardless of the direction of acting loads. Consequently, bridge plays an important biological role in increasing the strength properties of the skeleton at nonstandard directions of the load. Data presented in this paper show an extremely complex mechanical phenomena developing in the mineral matrix, which can be adequately assessed only by using a computer modeling based on the morphologically correct structural relationships of its components.

About the authors

A. S. Avrunin

Vreden Russian Research Institute of Traumatology and Orthopedics

Author for correspondence.
Email: a_avrunin@mail.ru
Россия

A. S. Semenov

St.-Petersburg State Politechnical University

Email: semenov.artem@googlemail.com
Россия

I. V. Fedorov

St.-Petersburg State Politechnical University

Email: fedorov.ilya.v@gmail.com
Россия

B. E. Mel’Nikov

All-Russian Research Institute on Medicinal and Aromatic Plants (VILAR), Research Center of Biomedical Technologies

Email: melnikovboris@mail.ru
Россия

A. A. Doctorov

St.-Petersburg State Politechnical University

Email: doctorovaa@mail.ru
Россия

L. K. Parshin

St.-Petersburg State Politechnical University

Email: kafedra@ksm.spbstu.ru
Россия

References

  1. Аврунин* А.С., Паршин Л.К., Аболин А.Б. Взаимосвязь морфофункциональных сдвигов на разных уровнях иерархической организации кортикальной кости при старении. Морфология. 2006;(3):22-29.
  2. Аврунин А.С., Тихилов Р.М., Аболин А.Б., Щербак И.Г. Уровни организации минерального матрикса костной ткани и механизмы, определяющие параметры их формирования (аналитический обзор). Морфология. 2005; (2):19-28.
  3. Аврунин А.С., Тихилов Р.М., Паршин Л.К., Мельников Б.Е. Иерархическая организация скелета — фактор, регламентирующий структуру усталостных повреждений. Часть II. Гипотетическая модель формирования и разрушения связей между объединениями кристаллитов. Травматология и ортопедия России. 2010;(1):48-57.
  4. Денисов-Никольский Ю.И., Миронов С.П., Омельяненко Н.П., Матвейчук И.В. Актуальные проблемы теоретической и клинической остеоартрологии. М.; 2005. 336 с.
  5. Лоде В. Влияние среднего главного напряжения на текучесть металлов. В кн. Теория пластичности. М.: Иностранная литература; 1948. с.168-205.
  6. Ньюман У., Ньюман М. Минеральный обмен кости [Mineral metabolism of bone]. М.: Иностранная литература; 1961. 269 с.
  7. Семёнов А.С. PANTOCRATOR — конечно-элементный программный комплекс, ориентированный на решение нелинейных задач механики. В кн.: Научно-технические проблемы прогнозирования надежности и долговечности конструкций и методы их решения: труды V международной конф. СПб.: СПбГПУ; 2003. с 466-480.
  8. Akkus O., Adar F., Schaffler M.B. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone. 2004; 34(3):443-453.
  9. Akkus O., Knott D.F., Jepsen K.J., Davy D.T., Rimnac C.M. Relationship between damage accumulation and mechanical property degradation in cortical bone: Microcrack orientation is important. J. Biomed. Mater. Res. A. 2003;65(4):482-488.
  10. Akkus O., Yeni Y.N., Wasserman N. Fracture mechanics of cortical bone tissue: a hierarchical perspective. Crit. Rev. Biomed. Eng. 2004;32(5-6):379-426;
  11. Ascenzi M-G., Lomovtsev A. Collagen orientation patterns in human secondary osteons, quantifid in the radial direction by confocal microscopy. J. Struct. Biol. 2006; 153(1):14-30;
  12. Bonfield W., Grynpas M.D. Anisotropy of the Young's modulus of bone. Nature. 1977; 270(5636):453-454.
  13. Boyde A., Hobdell M.H. Scanning electronmicroscopy of lamellar bone. Z. Zellforsch. 1969;93:213-231.
  14. Boyde A. Scanning electron microscope studies of bone. In: The biochemistry and physiology of bone. N.Y.; London: Academic Press; 1972. Vol. 1. P.259-310.
  15. Buckwalter J.A., Glimcher M.J., Cooper R.R., Recker R. Bone biology. Part II: Formation, form, modeling, remodeling and regulation of cell function. Instr. Course Lect. 1996; (45):387-399.
  16. Burstein A.H., Reilly D. T., Martens M. Aging of bone tissue: mechanical properties J. Bone Joint Surg. Am. 1976;58(1):82-86.
  17. Burstein A.H., Zika J. M., Heiple K. G., Klein L. Contribution of collagen and mineral to the elastic-plastic properties of bone. J. Bone Joint Surg. Am. 1975; 57(7):956-961.
  18. Currey J.D. Mechanical properties of vertebrate hard tissues. Proc. Inst. Mech. Eng. H. 1998; 212(6):399-411.
  19. Currey J.D. Stress concentrations in bone. Quarterly J. Microscop. Sci. 1962; 103, Pt. 1:111-133.
  20. Currey J.D. Three analogies to explain the mechanical properties of bone. Biorheology. 1964; 2:1-10.
  21. De Margerie E. Laminar bone as an adaptation to torsional loads in flapping flight. J. Anat. 2002; 201(6):521-526.
  22. De Margerie E., Sanchez S., Cubo J., Castanet J. Torsional resistance as a principal component of the structural design of long bones: comparative multivariate evidence in birds. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2005; 282(1):49-66.
  23. Duncan R.L., Turner C.H. Mechanotransduction and the functional response of bone to mechanical strain. Calcif. Tissue Int. 1995; 57(5):344-358.
  24. Fang Yuan, Stock S.R., Haeffner D.R., Almer J.D., Dunand D.C., Brinson L.C. A new model to simulate the elastic properties of mineralized collagen fibril. Biomech. Model Mechanobiol. 2011; 10(2):147-160.
  25. Fratzl P., Gupta H.S., Paschalis E.P., Roschger P. Structure and mechanical quality of the collagenmineral nano-composite in bone. J. Mater. Chem. 2004; 14:2115-2123.
  26. Frost H.M. Obesity, and bone strength and «mass»: a tutorial based on insights from a new paradigm. Bone. 1997; 21(3):211-214.
  27. Galilei G. Dialogues concerning two new sciences. 1638. Translated from the Italian and Latin into English by Henry Crew and Alfonso de Salvio. With an Introduction by Antonio Favaro. New York: Macmillan; 1914.
  28. Hassenkam T., Fantner G.E., Cutroni J.A., Weaver J.C., Morse D.E., Hansma P.K. High-resolution AFM imaging of intact and fractured trabecular bone. Bone. 2004; 35(1):4-10.
  29. Jager I., Fratzl P. Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys. J. 2000; 79(4):1737-1746.
  30. Katsamanis F., Raftopoulos D.D. Determination of mechanical properties of human femoral cortical bone by the Hopkinson bar stress technique. J. Biomech. 1990; 23(11):1173-1184.
  31. Kim D.G., Brunski J.B., Nicolella D.P. Microstrain fields for cortical bone in uniaxial tension: optical analysis method. Proc. Inst. Mech. Eng. H. 2005; 219(2):119-128.
  32. Lakes R., Saha S. Cement line motion in bone. Science. 1979; 204(4392):501-503.
  33. Landis W.J. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone. 1995; 16(5):533-544.
  34. Lawson A.C., Czernuszka J.T. Collagen-calcium-phosphate composites. Proc. Inst. Mech. Eng. H. 1998; 212(6):413-425.
  35. Levin S.M. The tensegrity-truss as a model for spine mechanics: biotensegrity. J. Mech. Med. Biol. 2002; 2(3-4):375-388.
  36. Lipson S.F., Katz J.L. The relationship between elastic properties and the microstructure of bovine cortical bone. J. Biomech. 1984; 17(4):231-240.
  37. Reilly D.T., Burstein, A.H. The elastic and ultimate properties of compact bone tissue. J. Biomech. 1975; 8(6):393-405.
  38. Robinson R.A., Cameron D.A. Electron microscopy of the primary spongiosa of the metaphysis at the distal end of the femur in the newborn infant. J. Bone Joint Surg. Am. 1958; 40-A(3):687-697.
  39. Robinson R.A. Crystal-collagen-water relationships in bone matrix. Clin. Orthop. 1960; (17):69-76.
  40. Sansalone V., Naili S., Bousson V., Bergot С., Peyrin F., Zarka J., Laredo J.D., Haiat G. Determination of the heterogeneous anisotropic elastic properties of human femoral bone: From nanoscopic to organ scale. J. Biomech. 2010; 43(10):1857-1863.
  41. Thompson J.B., Kindt J.H., Drake B., Hansma I.G., Morse D.E., Hansma P.K. Bone indentation recovery time correlates with bond reforming time. Nature. 2001; 414(6865):773-777.
  42. Traub W., Arad T., Weiner S. Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc. Natl. Acad. Sci. USA. 1989; 86(24):9822-9826.
  43. Wang X., Bank R.A., TeKoppele J.M., Hubbard G.B., Athanasiou K.A., Agrawal C.M. Effect of collagen denaturation on the toughness of bone. Clin. Orthop. 2000;371:228-239.
  44. Weiner S., Arad T., Sabanay I., Traub W. Rotated plywood structure of primary lamellar bone in the rat: orientations of the collagen fibril arrays. Bone. 1997; 20(6):509-514.
  45. Weiner S., Traub W. Bone structure: from angstroms to microns. FASEB J. 1992; 6(3):879-885.
  46. Weiner S., Wagner H.D. The material bone: structure-mechanical function relations. Ann. Rev. Mater. Sci. 1998; 28(1):271-298.
  47. Wolff J. Das Gesetz der Transformation der inneren Architektur der Knochen bei pathologischen Veränderungen der äusseren Knochenform. Sitzungsberichte der Königlich Preussischen Akadkmie der Wissenschaften zu Berlin. Sitzung der phys.-math. Classe Vol. 21. April. Mittheilung v. 13. Man. 1884, 23 p.
  48. Zienkiewicz O.C., Taylor R.L. Zhu J.Z. The finite element method. 2005. Elsevier. 631 p.
  49. Zioupos P. Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone. J. Microsc. 2001; 201(Pt. 2):270-278.
  50. Zioupos P., Currey J.D. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone. 1998; 22(1):57-66.
  51. Zioupos P., Currey J.D. The extent of microcracking and the morphology of microcracks in damaged bone. J. Mater. Sci. 1994; 29(4):978-986.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 82474 от 10.12.2021.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies