Preview

Травматология и ортопедия России

Расширенный поиск

Экспериментальные исследования биоактивности композитных материалов, перспективных для использования в травматологии и ортопедии: обзор литературы

https://doi.org/10.21823/2311-2905-2021-27-1-97-105

Полный текст:

Реферат

Цель исследования — определение свойств современных биоактивных композитных материалов, имеющих наибольшее преимущество для использования в травматологии и ортопедии, в том числе в хирургии позвоночника.

Материал и методы. Выполнен поиск и анализ литературных источников, опубликованныех в научной базе PubMed, а также научной электронной библиотеки eLIBRARY и поисковой системе Semantic Scholar. Для поиска использованы ключевые слова: имплантаты, современные биоматериалы, композиты, тканевая инженерия, скаффолды, графен, гидрогели, 3D-биопечать, ортопедия. Нами был произведен поиск научных публикаций за период с 2010 по 2020 г. Оценивались следующие свойства: биотолерантность, биоактивность, остеокондуктив- ность, остеоиндуктивность, остеостимуляция, механическая прочность.

Результаты. Созданию композитов уделяется особое внимание. Композиты изготовлены путем объединения двух или более материалов для достижения биохимических и биомеханических свойств. В производстве композитов определенное место занимает технология 3D-биопечати, благодаря которой возможна разработка индивидуального имплантата согласно заданной ситуации.

Заключение. Сочетание свойств композитных материалов, указывающих на их биоактивность и прочность, а также использование 3D-технологий для формирования геометрических размеров имплантатов из них обеспечивают высокий потенциал для применения в области травматологии и ортопедии, в том числе для использования в хирургии позвоночника.

Об авторах

В. В. Рерих
ФГБУ «Новосибирский научно-исследовательский институт травматологии и ортопедии им. Я.Л. Цивьяна» Минздрава России; ФГБОУ ВО «Новосибирский государственный медицинский университет» Минздрава России
Россия

Рерих Виктор Викторович — д-р мед. наук, началник научно-исследовательского отделения патологии позвоночника; профессор кафедры травматологии и ортопедии

г. Новосибирск



В. Д. Синявин
ФГБУ «Новосибирский научно-исследовательский институт травматологии и ортопедии им. Я.Л. Цивьяна» Минздрава России
Россия

Синявин Владимир Дмитриевич — аспирант

г. Новосибирск



Список литературы

1. Рерих В.В., Предеин Ю.А, Зайдман А.М., Ластевский А.Д., Батаев В.А., Никулина А.А. Экспериментальное обоснование применения остеотрансплантата при травматических дефектах позвонка. Хирургия позвоночника. 2018;15(4):41-51. doi: 10.14531/2018.4.41-51.

2. Asghari F., Samiei M., Adibkia K., Akbarzadeh A., Davaran S. Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif Cells Nanomed Biotechnol. 2017;45:185-192. doi: 10.3109/21691401.2016.1146731.

3. Bastami F., Nazeman P., Moslemi H., Rezai Rad M., Sharifi K., Khojasteh A. Induced pluripotent stem cells as a new getaway for bone tissue engineering: a systematic review. Cell Prolif. 2017;50(2):e12321. doi: 10.1111/cpr.12321.

4. Anastasiadis K., Koulaouzidou E., Palaghias G., Eliades G. Bonding of Composite to Base Materials: Effects of Adhesive Treatments on Base Surface Properties and Bond Strength. J Adhes Dent. 2018;20(2):151-164. doi: 10.3290/j.jad.a40302.

5. Кирилова И.А. Анатомо-функциональные свойства кости как основа создания костно-пластических материалов для травматологии и ортопедии. Москва: ФИЗМАТЛИТ; 2019. 256 с.

6. Yu W., Li R., Chen P., Hou A., Li R., Sun X. et al. Use of a three-dimensional printed polylactide-coglycolide/ tricalcium phosphate composite scaffold incorporating magnesium powder to enhance bone defect repair in rabbits. J Orthop Translat. 2018;16:62-70. doi: 10.1016/j.jot.2018.07.007.

7. Кузнецова Д.С., Тимашев П.С., Баграташвили В.Н., Загайнова Е.В. Костные имплантаты на основе скаффолдов и клеточных систем в тканевой инженерии (обзор). Современные технологии в медицине. 2014; 6(4):201-212.

8. Chernozem R.V., Surmeneva M.A., Shkarina S.N., Loza K., Epple M., Ulbricht M. et al. Piezoelectric 3-D Fibrous Poly (3-hydroxybutyrate)-Based Scaffolds Ultrasound-Mineralized with Calcium Carbonate for Bone Tissue Engineering: Inorganic Phase Formation, Osteoblast Cell Adhesion, and Proliferation. ACS Appl Mater Interfaces. 2019;11(21):19522-19533. doi: 10.1021/acsami.9b04936.

9. Zviagin A., Chernozem R.V., Surmeneva M.A., Loza K., Prymak O., Ulbricht M. et al. Influence of Calcium- Phosphate Coating on Wet ability of Hybrid Piezoelectric Scaffolds. IOP Conf. Ser.: Mater. Sci. Eng. 2019;597(1): 12-61. doi: 10.1088/1757-899X/597/1/012061.

10. Gleeson J., O’Brien F. Composite scaffolds for orthopedic regenerative medicine. In: Advances in Composite Materials for Medicine and Nanotechnology. In Tech Open Access; 2011. p. 33-59.

11. Bhumiratana S., Vunjak-Novakovic G. Concise review: personalized human bone grafts for reconstructing head and face. Stem Cells Trans Med. 2012;1(1):64-69. doi: 10.5966/sctm.2011-0020.

12. Grayson W.L., Frohlich M., Yeager K., Bhumiratana S., Chan M.E., Cannizzaro C. et al. Engineering anatomically shaped human bone grafts. Proc Natl Acad Sci USA.2010;107(8):3299-3304. doi: 10.1073/pnas.0905439106.

13. Stella J.A., D’Amore A., Wagner W.R., Sacks M.S. On the biomechanical function of scaffolds for engineering load bearing soft tissues. Acta Biomater. 2010;6(7):2365-2381, doi: 10.1016/j.actbio.2010.01.001.

14. Amoabediny Gh., Salehi-Nik N., Heli B. The role of biodegradable engineered scaffold in tissue engineering. In: Biomaterials Science and Engineering. 2011. p. 153-172.

15. Garg T., Singh O., Arora S., Murthy R. Scaffold: a novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst. 2012;29(1):1-63. doi: 10.1615/critrevtherdrugcarriersyst.v29.i1.10.

16. Carfi Pavia F.C., Rigogliuso S., La Carrubba V., Mannella G.A., Ghersi G., Brucato V. Poly lactic acid based scaffolds for vascular tissue engineering. Chem Eng Transactions. 2012;27:409-414.

17. Gloria A., Causa F., Russo T., Battista E., Della Moglie R., Zeppetelli S. et al. Three-dimensional poly(ε-caprolactone) bioactive scaffolds with controlled structural and surface properties. Biomacromolecules. 2012;13(11):3510-3521. doi: 10.1021/bm300818y.

18. Mei N., Chen G., Zhou P., Chen X., Shao Z.Z., Pan L.F., Wu C.G. Biocompatibility of Poly(epsilon-caprolactone) scaffold modified by chitosan – the fibroblasts proliferation in vitro. J BiomaterAppl. 2005;(62):992-997. doi: 10.1177/0885328205048630.

19. Turnbull G., Clarke J., Picard F., Riches P.E., Jia L., Han F. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 2017;3(3):278-313. doi: 10.1016/j.bioactmat.2017.10.001.

20. Moukbil Y., Isindag B., Ozbek B., Gayir V.E. 3D printed bioactive composite scaffolds for bone tissue engineering. Bioprinting. 2020;(17):64. doi: 10.1016/j.bprint.2019.e00064.

21. Lee J.H., Jeong B.O. The effect of hyaluronatecarboxymethyl cellulose on bone graft substitute healing in a rat spinal fusion model. J Korean Neurosurg Soc. 2011;50(5):409-414. doi: 10.3340/jkns.2011.50.5.409.

22. Jiang T., Khan Y., Nair L.S., Abdel-Fattah W.S., Laurencin C.T. Functionalization of chitosan/poly (lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering. J Biomed Mater Res A. 2010;93(3):1193-1208. doi: 10.1002/jbm.a.32615.

23. Wu H., Lei P., Liu G., Zhang Yu Sh., Yang J., Zhang L. et al. Reconstruction of large-scale defects with a novel hybrid scaffold made from poly(l-lactic acid)/Nanohydroxyapatite/ Alendronateloaded chitosan microsphere: in vitro and in vivo studies. Sci Rep. 2017;7(1):359. doi: 10.1038/s41598-017-00506-z.

24. Wang Ch.-Z., Chen S.-M., Chen Ch.-H., Wang Ch.-K., Wang Gh.-J., Chang J.-K. The effect of the local delivery of alendronate on human adipose-derived stem cellbased bone regeneration. Biomaterials. 2010;31(33): 8674-8683. doi: 10.1016/j.biomaterials.2010.07.096.

25. Goncalves E.M., Oliveira F.J., Silva R.F., Neto M.A., Fernandes M.H., Amaral M. et al. Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation. J Biomed Mater Res B Appl Biomater. 2016;104(6):1210-1219. doi: 10.1002/jbm.b.33432.

26. Jakus A.E., Rutz A., Jordan S.W., Kannan A., Mitchell S.M., Yun Ch. et al. Hyperelastic “bone”: a highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial. Sci Transl Med. 2016;8(358):358ra127. doi: 10.1126/scitranslmed.aaf7704.

27. Ahmed E.M. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015;6(2):105-121. doi: 10.1016/j.jare.2013.07.006.

28. Dziadek M., Kudlackova R., Zima A., Slosarczyk A., Ziabka M., Jelen P. et al. Novel multicomponent organic– inorganic WPI/gelatin/CaP hydrogel composites for bone tissue engineering. J Biomed Mater Res A. 2019;107(11):2479-2491. doi: 10.1002/jbm.a.36754.

29. Markstedt K., Mantas A., Tournier I., Ávila H.M., Hägg D., Gatenholm P. 3D bioprinting human chondrocytes with nano-cellulosee-alginate-bioink for cartilage tissue engineering applications. Biomacromolecules. 2015;16(5):1489-1496. doi: 10.1021/acs.biomac.5b00188.

30. Lou Y.R., Kanninen L., Kuisma T., Niklander J., Noon L A., Burks D. et al. The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Dev. 2014;23(4):380-392. doi: 10.1089/scd.2013.0314.

31. Кирилова И.А. Костная ткань как основа остеопластических материалов для восстановления костной структуры. Хирургия позвоночника. 2011;(1):68-74. doi: 10.14531/ss2011.1.68-74.

32. Chudinova E.A., Surmeneva M.A., Timin A.S., Karpov T.E., Wittmar A., Ulbricht M. et al. Adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells on additively manufactured Ti6Al4V alloy scaffolds modified with calcium phosphate nanoparticles. Colloids Surfaces B: Biointerfaces. 2019;176:130-139. doi: 10.1016/j.colsurfb.2018.12.047.

33. Yang H., Jia B., Zhang Z., Qu X., Li G., Lin W. et al. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat Commun. 2020;11(1):401. doi: 10.1038/s41467-019-14153-7.

34. Wang S., Duan C., Yang W., Gao X., Shi J., Kang J. et al. Two-dimensional nanocoating-enabled orthopedic implants for bimodal therapeutic applications. Nanoscale. 2020;11;12(22):11936-11946. doi: 10.1039/d0nr02327b.

35. Singh Z. Applications and toxicity of graphene family nanomaterials and their composites. Nanotechnol Sci Appl. 2016;9:15-28. doi: 10.2147/NSA.S101818.

36. Murugan N., Chozhanathmisra M., Sathishkumar S., Karthikeyan P., Rajavel R. Novel graphene-based reinforced hydroxyapatite composite coatings on titanium with enhanced anti-bacterial, anti-corrosive and biocompatible properties for improved orthopedic applications. IJPCBS. 2016;6(4):432-442.

37. Karpov T.E., Peltek O.O., Muslimov A.R., Tarakanchikova Y.V., Grunina T.M., Poponova M.S et al. Development of Optimized Strategies for Growth Factor Incorporation onto Electrospun Fibrous Scaffolds to Promote Prolonged Release. ACS Appl Mater Interfaces. 2020;12(5):5578-5592. doi: 10.1021/acsami.9b20697.

38. Zhao C., Lu X., Zanden C., Liu J. The promising application of graphene oxide as coating materials in orthopedic implants: preparation, characterization and cell behavior. Biomed Mater.

39. ;10(1):015019. doi: 10.1088/1748-6041/10/1/015019.


Для цитирования:


Рерих В.В., Синявин В.Д. Экспериментальные исследования биоактивности композитных материалов, перспективных для использования в травматологии и ортопедии: обзор литературы. Травматология и ортопедия России. 2021;27(1):97-105. https://doi.org/10.21823/2311-2905-2021-27-1-97-105

For citation:


Rerikh V.V., Sinyavin V.D. Bioactivity Experimental Studies of Composite Materials Promising for Use in Traumatology and Orthopedics: Review. Traumatology and Orthopedics of Russia. 2021;27(1):97-105. (In Russ.) https://doi.org/10.21823/2311-2905-2021-27-1-97-105

Просмотров: 194


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2311-2905 (Print)
ISSN 2542-0933 (Online)