Bioactivity Experimental Studies of Composite Materials Promising for Use in Traumatology and Orthopedics: Review

Cover Page


Cite item

Full Text

Abstract

The aim of the study — to determine the properties of modern bioactive composite materials that have the greatest advantage for use in traumatology and orthopedics, particularly in spine surgery.

Material and Methods. We performed a comprehensive literature search using PubMed, Medline, eLIBRARY and Semantic Scholar. The keywords “implants”, “biomaterials”, “composites”, “tissue engineering”, “scaffolds”, “graphene”, “hydrogels”, “3D bioprinting” were used to identify papers examining the topic of interest. We included comparative studies published from 2010 to 2020 in our review. The following properties were evaluated in papers: biotolerance, bioactivity, osteoconductivity, osteoinductivity, osteostimulation, mechanical strength.

Results. Special attention is paid to the creation of composites. Composites are made by combining two or more materials to achieve biochemical and biomechanical properties. In composites production, a certain place is occupied by the technology of 3D bioprinting, thanks to which it is possible to develop an individual implant according to a given situation.

Conclusion. The combination of composite materials properties indicating on their bioactivity and mechanical strength, as well as the use of 3D techniques to design the geometric forms of implants, provide a high potential for use in traumatology and orthopedics, particularly in spinal surgery.

About the authors

V. V. Rerikh

Tsivyan Novosibirsk Research Institute of Traumatology and Orthopaedics; Novosibirsk State Medical University

Author for correspondence.
Email: clinic@niito.ru
ORCID iD: 0000-0001-8545-0024

Victor V. Rerikh — Dr. Sci. (Med.), Head of the Research Department of Spinal Pathology; Professor, Department of Traumatology and Orthopedics

Novosibirsk

Россия

V. D. Sinyavin

Tsivyan Novosibirsk Research Institute of Traumatology and Orthopaedics

Email: Dr.VladimirSinyavin@gmail.com
ORCID iD: 0000-0001-5237-6403

Vladimir D. Sinyavin — PhD Student

Novosibirsk

Россия

References

  1. Рерих В.В., Предеин Ю.А, Зайдман А.М., Ластевский А.Д., Батаев В.А., Никулина А.А. Экспериментальное обоснование применения остеотрансплантата при травматических дефектах позвонка. Хирургия позвоночника. 2018;15(4):41-51. doi: 10.14531/2018.4.41-51.
  2. Asghari F., Samiei M., Adibkia K., Akbarzadeh A., Davaran S. Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif Cells Nanomed Biotechnol. 2017;45:185-192. doi: 10.3109/21691401.2016.1146731.
  3. Bastami F., Nazeman P., Moslemi H., Rezai Rad M., Sharifi K., Khojasteh A. Induced pluripotent stem cells as a new getaway for bone tissue engineering: a systematic review. Cell Prolif. 2017;50(2):e12321. doi: 10.1111/cpr.12321.
  4. Anastasiadis K., Koulaouzidou E., Palaghias G., Eliades G. Bonding of Composite to Base Materials: Effects of Adhesive Treatments on Base Surface Properties and Bond Strength. J Adhes Dent. 2018;20(2):151-164. doi: 10.3290/j.jad.a40302.
  5. Кирилова И.А. Анатомо-функциональные свойства кости как основа создания костно-пластических материалов для травматологии и ортопедии. Москва: ФИЗМАТЛИТ; 2019. 256 с.
  6. Yu W., Li R., Chen P., Hou A., Li R., Sun X. et al. Use of a three-dimensional printed polylactide-coglycolide/ tricalcium phosphate composite scaffold incorporating magnesium powder to enhance bone defect repair in rabbits. J Orthop Translat. 2018;16:62-70. doi: 10.1016/j.jot.2018.07.007.
  7. Кузнецова Д.С., Тимашев П.С., Баграташвили В.Н., Загайнова Е.В. Костные имплантаты на основе скаффолдов и клеточных систем в тканевой инженерии (обзор). Современные технологии в медицине. 2014; 6(4):201-212.
  8. Chernozem R.V., Surmeneva M.A., Shkarina S.N., Loza K., Epple M., Ulbricht M. et al. Piezoelectric 3-D Fibrous Poly (3-hydroxybutyrate)-Based Scaffolds Ultrasound-Mineralized with Calcium Carbonate for Bone Tissue Engineering: Inorganic Phase Formation, Osteoblast Cell Adhesion, and Proliferation. ACS Appl Mater Interfaces. 2019;11(21):19522-19533. doi: 10.1021/acsami.9b04936.
  9. Zviagin A., Chernozem R.V., Surmeneva M.A., Loza K., Prymak O., Ulbricht M. et al. Influence of Calcium- Phosphate Coating on Wet ability of Hybrid Piezoelectric Scaffolds. IOP Conf. Ser.: Mater. Sci. Eng. 2019;597(1): 12-61. doi: 10.1088/1757-899X/597/1/012061.
  10. Gleeson J., O’Brien F. Composite scaffolds for orthopedic regenerative medicine. In: Advances in Composite Materials for Medicine and Nanotechnology. In Tech Open Access; 2011. p. 33-59.
  11. Bhumiratana S., Vunjak-Novakovic G. Concise review: personalized human bone grafts for reconstructing head and face. Stem Cells Trans Med. 2012;1(1):64-69. doi: 10.5966/sctm.2011-0020.
  12. Grayson W.L., Frohlich M., Yeager K., Bhumiratana S., Chan M.E., Cannizzaro C. et al. Engineering anatomically shaped human bone grafts. Proc Natl Acad Sci USA.2010;107(8):3299-3304. doi: 10.1073/pnas.0905439106.
  13. Stella J.A., D’Amore A., Wagner W.R., Sacks M.S. On the biomechanical function of scaffolds for engineering load bearing soft tissues. Acta Biomater. 2010;6(7):2365-2381, doi: 10.1016/j.actbio.2010.01.001.
  14. Amoabediny Gh., Salehi-Nik N., Heli B. The role of biodegradable engineered scaffold in tissue engineering. In: Biomaterials Science and Engineering. 2011. p. 153-172.
  15. Garg T., Singh O., Arora S., Murthy R. Scaffold: a novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst. 2012;29(1):1-63. doi: 10.1615/critrevtherdrugcarriersyst.v29.i1.10.
  16. Carfi Pavia F.C., Rigogliuso S., La Carrubba V., Mannella G.A., Ghersi G., Brucato V. Poly lactic acid based scaffolds for vascular tissue engineering. Chem Eng Transactions. 2012;27:409-414.
  17. Gloria A., Causa F., Russo T., Battista E., Della Moglie R., Zeppetelli S. et al. Three-dimensional poly(ε-caprolactone) bioactive scaffolds with controlled structural and surface properties. Biomacromolecules. 2012;13(11):3510-3521. doi: 10.1021/bm300818y.
  18. Mei N., Chen G., Zhou P., Chen X., Shao Z.Z., Pan L.F., Wu C.G. Biocompatibility of Poly(epsilon-caprolactone) scaffold modified by chitosan – the fibroblasts proliferation in vitro. J BiomaterAppl. 2005;(62):992-997. doi: 10.1177/0885328205048630.
  19. Turnbull G., Clarke J., Picard F., Riches P.E., Jia L., Han F. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 2017;3(3):278-313. doi: 10.1016/j.bioactmat.2017.10.001.
  20. Moukbil Y., Isindag B., Ozbek B., Gayir V.E. 3D printed bioactive composite scaffolds for bone tissue engineering. Bioprinting. 2020;(17):64. doi: 10.1016/j.bprint.2019.e00064.
  21. Lee J.H., Jeong B.O. The effect of hyaluronatecarboxymethyl cellulose on bone graft substitute healing in a rat spinal fusion model. J Korean Neurosurg Soc. 2011;50(5):409-414. doi: 10.3340/jkns.2011.50.5.409.
  22. Jiang T., Khan Y., Nair L.S., Abdel-Fattah W.S., Laurencin C.T. Functionalization of chitosan/poly (lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering. J Biomed Mater Res A. 2010;93(3):1193-1208. doi: 10.1002/jbm.a.32615.
  23. Wu H., Lei P., Liu G., Zhang Yu Sh., Yang J., Zhang L. et al. Reconstruction of large-scale defects with a novel hybrid scaffold made from poly(l-lactic acid)/Nanohydroxyapatite/ Alendronateloaded chitosan microsphere: in vitro and in vivo studies. Sci Rep. 2017;7(1):359. doi: 10.1038/s41598-017-00506-z.
  24. Wang Ch.-Z., Chen S.-M., Chen Ch.-H., Wang Ch.-K., Wang Gh.-J., Chang J.-K. The effect of the local delivery of alendronate on human adipose-derived stem cellbased bone regeneration. Biomaterials. 2010;31(33): 8674-8683. doi: 10.1016/j.biomaterials.2010.07.096.
  25. Goncalves E.M., Oliveira F.J., Silva R.F., Neto M.A., Fernandes M.H., Amaral M. et al. Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation. J Biomed Mater Res B Appl Biomater. 2016;104(6):1210-1219. doi: 10.1002/jbm.b.33432.
  26. Jakus A.E., Rutz A., Jordan S.W., Kannan A., Mitchell S.M., Yun Ch. et al. Hyperelastic “bone”: a highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial. Sci Transl Med. 2016;8(358):358ra127. doi: 10.1126/scitranslmed.aaf7704.
  27. Ahmed E.M. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015;6(2):105-121. doi: 10.1016/j.jare.2013.07.006.
  28. Dziadek M., Kudlackova R., Zima A., Slosarczyk A., Ziabka M., Jelen P. et al. Novel multicomponent organic– inorganic WPI/gelatin/CaP hydrogel composites for bone tissue engineering. J Biomed Mater Res A. 2019;107(11):2479-2491. doi: 10.1002/jbm.a.36754.
  29. Markstedt K., Mantas A., Tournier I., Ávila H.M., Hägg D., Gatenholm P. 3D bioprinting human chondrocytes with nano-cellulosee-alginate-bioink for cartilage tissue engineering applications. Biomacromolecules. 2015;16(5):1489-1496. doi: 10.1021/acs.biomac.5b00188.
  30. Lou Y.R., Kanninen L., Kuisma T., Niklander J., Noon L A., Burks D. et al. The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Dev. 2014;23(4):380-392. doi: 10.1089/scd.2013.0314.
  31. Кирилова И.А. Костная ткань как основа остеопластических материалов для восстановления костной структуры. Хирургия позвоночника. 2011;(1):68-74. doi: 10.14531/ss2011.1.68-74.
  32. Chudinova E.A., Surmeneva M.A., Timin A.S., Karpov T.E., Wittmar A., Ulbricht M. et al. Adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells on additively manufactured Ti6Al4V alloy scaffolds modified with calcium phosphate nanoparticles. Colloids Surfaces B: Biointerfaces. 2019;176:130-139. doi: 10.1016/j.colsurfb.2018.12.047.
  33. Yang H., Jia B., Zhang Z., Qu X., Li G., Lin W. et al. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat Commun. 2020;11(1):401. doi: 10.1038/s41467-019-14153-7.
  34. Wang S., Duan C., Yang W., Gao X., Shi J., Kang J. et al. Two-dimensional nanocoating-enabled orthopedic implants for bimodal therapeutic applications. Nanoscale. 2020;11;12(22):11936-11946. doi: 10.1039/d0nr02327b.
  35. Singh Z. Applications and toxicity of graphene family nanomaterials and their composites. Nanotechnol Sci Appl. 2016;9:15-28. doi: 10.2147/NSA.S101818.
  36. Murugan N., Chozhanathmisra M., Sathishkumar S., Karthikeyan P., Rajavel R. Novel graphene-based reinforced hydroxyapatite composite coatings on titanium with enhanced anti-bacterial, anti-corrosive and biocompatible properties for improved orthopedic applications. IJPCBS. 2016;6(4):432-442.
  37. Karpov T.E., Peltek O.O., Muslimov A.R., Tarakanchikova Y.V., Grunina T.M., Poponova M.S et al. Development of Optimized Strategies for Growth Factor Incorporation onto Electrospun Fibrous Scaffolds to Promote Prolonged Release. ACS Appl Mater Interfaces. 2020;12(5):5578-5592. doi: 10.1021/acsami.9b20697.
  38. Zhao C., Lu X., Zanden C., Liu J. The promising application of graphene oxide as coating materials in orthopedic implants: preparation, characterization and cell behavior. Biomed Mater.
  39. ;10(1):015019. doi: 10.1088/1748-6041/10/1/015019.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 82474 от 10.12.2021.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies