In Vitro Evaluation of the Allogeneic Bone Matrix Effect on the Adipose Mesenchymal Stromal Cells Characteristics in Combined Tissue Engineering
- Authors: Cherdantseva L.A.1, Anastasieva E.A.1, Aleynik D.Y.2, Egorikhina M.N.2, Kirilova I.A.1
-
Affiliations:
- Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics
- Privolzhsky Research Medical University
- Issue: Vol 27, No 1 (2021)
- Pages: 53-65
- Section: Theoretical and experimental studies
- Submitted: 01.11.2020
- Accepted: 10.02.2021
- Published: 02.04.2021
- URL: https://journal.rniito.org/jour/article/view/1554
- DOI: https://doi.org/10.21823/2311-2905-2021-27-1-53-65
- ID: 1554
Cite item
Full Text
Abstract
The aim of the study was to evaluate in vitro the effect of native and deproteinized compact and spongy allogenic bone matrices on the characteristics of adipose mesenchymal stromal cells (ASC) in combined tissue engineering.
Material and Methods. 24 samples of native and deproteinized compact and spongy bone were examined, which were exposed to mechanical treatment, modeling, followed by sterilization of the samples by ionizing radiation and bacteriological control of sterilization. Some of the samples underwent deproteinization. The characterized cultures of human ASC were used as test cultures to assess the interaction with the bone samples. The Cytation-5 fluorescent imager and Hoechst 3334 fluorochromes (BD Pharmingen™) and calcein (Calcein AM, BD Pharmingen™) were used to characterize the degree of adhesion, migration, and viability of ASC on bone matrix samples. Matrix cytotoxicity was evaluated by MTT assay on days 1 and 7 of extraction.
Results. The bone matrix samples are characterized by the absence of cytotoxicity (rank 1). ASC demonstrated good adhesion and migration on any surface of the bone matrix and preservation of cell viability during 7 days of observation. Nuclei sizes of the cells adhered to the deproteinized bone matrix of the spongy structure increased by 25–30% compared to other samples. The cells on deproteinized bone matrix had greater size (the size of the cells from nuclei 8.8 to 11.5 μm, the average size of cells nuclei from an 86.3 μm to 129,0 μm, the average perimeter of the cells nuclei from 30.7 μm to 40.7 μm) than in the native bone matrix samples.
Conclusion. The results of the study of various allogeneic bone matrices demonstrate that deep purification of the bone matrix determines the absence of cytotoxicity and the most favorable conditions for the adhesion, migration, proliferation and viability of ASC. Also makes it possible to use tissue engineering based on bone matrices of different structures. Deproteinized spongy bone matrices are best suited for this purpose.
About the authors
L. A. Cherdantseva
Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics
Email: cherdanceff@yandex.ru
ORCID iD: 0000-0002-4729-3694
Liliya A. Cherdantseva — Cand. Sci. (Med.), Head of the Laboratory for Procurement and Preservation of Tissues
Novosibirsk
РоссияE. A. Anastasieva
Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics
Email: evgeniya.anastasieva@gmail.com
ORCID iD: 0000-0002-9329-8373
Evgeniya A. Anastasieva — PhD Student
Novosibirsk
РоссияD. Ya. Aleynik
Privolzhsky Research Medical University
Email: daleynik@yandex.ru
ORCID iD: 0000-0003-1482-4281
Diane Ya. Aleynik — Cand. Sci. (Med.), Senior Researcher, Laboratory of Regenerative Medicine, Institute of Experimental Oncology and Biomedical Technologies
Nizhny Novgorod
M. N. Egorikhina
Privolzhsky Research Medical University
Email: egorihina.marfa@yandex.ru
ORCID iD: 0000-0002-8815-9651
Marfa N. Egorikhina — Cand. Sci. (Biol.), Leading Researcher, Laboratory of Regenerative Medicine, Institute of Experimental Oncology and Biomedical Technologies
Nizhny Novgorod
I. A. Kirilova
Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics
Author for correspondence.
Email: IrinaKirilova71@mail.ru
ORCID iD: 0000-0003-1911-9741
Irina A. Kirilova — Dr. Sci. (Med.), Deputy Director
Novosibirsk
References
- Воробьев К.А., Божкова С.А., Анисимова Л.И., Нетылько Г.И. Влияние методов заготовки костно-пластического материала на процессы ремоделирования в модели костного дефекта в эксперименте in vivo. Практическая медицина. 2019;17(1):67-72. doi: 10.32000/2072-1757-2019-1-67-72.
- Живцов О.П., Алейник Д.Я., Орлинская Н.Ю., Митрофанов В.Н. Особенности регенерации костной ткани в условиях применения клеточно-инженерной конструкции для восстановления костного дефекта у кроликов. Международный журнал прикладных и фундаментальных исследований. 2019;(11):54-59. doi: 10.17513/mjpfi.12931.
- Кирилова И.А., Садовой М.А., Подорожная В.Т. Сравнительная характеристика материалов для костной пластики: состав и свойства. Хирургия позвоночника. 2012;(3):72-83. doi: 10.14531/ss2012.3.72-83
- Мухаметов У.Ф., Мухаметов Ф.Ф., Сулейманов Я.Н., Нагаев Р.Я., Нигматуллин Р.Т., Шангина О.Р. Некоторые аспекты ревизионного эндопротезирования тазобедренного сустава. Пластика костных дефектов губчатыми аллоплантами. Гений ортопедии. 2016;(4):29-35. doi: 10.18019/1028-4427-2016-4-29-35.
- Fernandez de Grado G., Keller L., Idoux-Gillet Y., Wagner Q., Musset A.M., Benkirane-Jessel N. et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng. 2018;9:2041731418776819. doi: 10.1177/2041731418776819.
- Воробьев К.А., Божкова С.А., Тихилов Р.М., Черный А.Ж. Современные способы обработки и стерилизации аллогенных костных тканей (обзор литературы). Травматология и ортопедия России. 2017;23(3): 134-147. doi: 10.21823/2311-2905-2017-23-3-134-147.
- Кирилова И.А. Анатомо-функциональные свойства кости как основа создания костно-пластических материалов для травматологии и ортопедии. Москва: Физматлит; 2019. 256 с.
- Gharedaghi M., Peivandi M.T., Mazloomi M., Shoorin H.R., Hasani M., Seyf P., Khazaee F. Evaluation of Clinical Results and Complications of Structural Allograft Reconstruction after Bone Tumor Surgery. Arch Bone Jt Surg. 2016;4(3):236-242.
- Qu H., Guo W., Yang R., Li D., Tang S., Yang Y. at al. Reconstruction of segmental bone defect of long bones after tumor resection by devitalized tumorbearing bone. World J Surg Oncol. 2015;13:282. doi: 10.1186/s12957-015-0694-3.
- Avril P., Le Nail L.R., Brennan M.Á., Rosset P., De Pinieux G., Layrolle P. et al. Mesenchymal stem cells increase proliferation but do not change quiescent state of osteosarcoma cells: Potential implications according to the tumor resection status. J Bone Oncol. 2015;5(1): 5-14. doi: 10.1016/j.jbo.2015.11.002.
- Perrot P., Rousseau J., Bouffaut A.L., Rédini F., Cassagnau E., Deschaseaux F. et al. Safety concern between autologous fat graft, mesenchymal stem cell and osteosarcoma recurrence. PLoS One. 2010;5(6):e10999. doi: 10.1371/journal.pone.0010999.
- Caplan A.I., Hariri R. Body Management: Mesenchymal Stem Cell the Internal Regenerator. Stem Cells Transl Med. 2015;4(7):695-700. doi: 10.5966/sctm.2014-0291.
- Кирилова И.А., Подорожная В.Т., Павлов В.В., Бедорева И.Ю. Организация донорства головок бедренных костей в Новосибирском НИИТО. Успехи современного естествознания. 2015;(9):49-52. Режим доступа: https://natural-sciences.ru/ru/article/view?id=35524.
- Хэм А., Кормак Д. Костная ткань. В кн.: Гистология. Москва: Мир; 1983. Т. 3. С. 19-131.
- Mossman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Met. 1983;65:55-63.
- Shanmugam S., Gopal B. Antimicrobial and cytotoxicity evaluation of aliovalent substituted hydroxyapatite. App Surf Sci. 2014;303:277-281. doi: 10.1016/j.apsusc.2014.02.166.
- Ho-Shui-Ling A., Bolander J., Rustom L.E., Johnson A.W., Luyten F.P., Picart C. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143-162. doi: 10.1016/j.biomaterials.2018.07.017.
- Oryan A., Alidadi S., Moshiri A., Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9(1):18. doi: 10.1186/1749-799X-9-18.
- Amini A.R., Laurencin C.T., Nukavarapu S.P. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40:363-408. doi: 10.1615/CritRevBiomedEng.v40.i5.10.
- Mallick K.K., Cox S.C. Biomaterial scaffolds for tissue engineering. Front Biosci. 2013;5:341-360. doi: 10.2741/e620.
- Bose S., Roy M., Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30(10):546-554. doi: 10.1016/j.tibtech.2012.07.005.
- Dawson E., Mapili G., Ericson K., Taqvi S., Roy K. Biomaterials for stem cell differentiation. Adv Drug Deliv Rev. 2008;60:215-228. doi: 10.1016/j.addr.2007.08.037.
- Reichert J.C., Nöth U., Berner A., Hutmacher D.W. Bone. In: Steinhoff G. (ed.) Regenerative Medicine – from Protocol to Patient. Switzerland: Springer, Cham; 2016. doi: 10.1007/978-3-319-28386-9_9.
- Mushahary D., Spittler A., Kasper C., Weber V., Charwat V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A. 2018;93(1):19-31. doi: 10.1002/cyto.a.23242
- Dominici M., Le Blanc K., Mueller I., Slaper- Cortenbach I., Marini F., Krause D. at al. Minimal criteria for defining multipotent mesenchymal cells. The international Society for cellular Therapy position stratement. Cytotherapy. 2006; 8(4):315-317. doi: 10.1080/14653240600855905.
- Ugarte D.A., Morizono K., Elabarbary A., Alfonso Z., Zuk P.A., Zhu M. at al. Comparison of multilineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174:101-109. doi: 10.1159/000071150.
- Mizuno H., Tobita M., Uysal A.C. Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells. 2012;30(5):804-810. doi: 10.1002/stem.1076.
- Im G.I., Shin Y.W., Lee K.B. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis Cartilage. 2005;13(10):845-853. doi: 10.1016/j.joca.2005.05.005.
- Hayashi O., Katsube Y., Hirose M., Ohgushi H., Ito H. Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Calcif Tissue Int. 2008;82(3):238-247. doi: 10.1007/s00223-008-9112-y.
- Kern S., Eichler H., Stoeve J., Klüter H., Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294-1301. doi: 10.1634/stemcells.2005-0342.
- Lendeckel S., Jodicke A., Christophis P., Heidinger K., Wolff J., Fraser J.K. et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg. 2004;32(6):370-373. doi: 10.1016/j.jcms.2004.06.002.
- Mesimäki K., Lindroos B., Törnwall J., Mauno J., Lindqvist C., Kontio R. et al. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg. 2009;38(3):201-209. doi: 10.1016/j.ijom.2009.01.001.