A new algorithm for histopathological diagnosis of periprosthetic infection using CD15 focus score and computer program CD15 Quantifier

Cover Page


Cite item

Abstract

Introduction. A simple microscopic diagnostic quantification system for neutrophile granulocytes (NG) was developed evaluating a single focal point (CD15 focus score) which enables the detection of bacterial infection in SLIM (synoviallike interface membrane) Additionally a diagnostic algorithm is proposed how to use the CD15 focus score and the quantification software (CD15 Quantifier). Methods. 91 SLIM removed during revision surgery for histopathological diagnosis (hip; n=59 and knee; n=32) underwent histopathological classification according to the SLIM-consensus classification. NG where identified immunohistochemically by means of a CD15-specific monoclonal antibody exhibiting an intense granular cytoplasmic staining pattern. This pattern is different from CD15 expression in macrophages showing a pale and homogenous expression in mononuclear cells. The quantitative evaluation of CD15-positive neutrophils granulocytes (CD15NG) used the principle of maximum focal infiltration (focus) together with an assessment of a single focal point (approximately 0.3 mm2). This immunohistochemical data made it possible to develop CD15 Quantifier software which automatically quantifies CD15NG. Results. SLIM-cases with positive microbiological diagnosis (n=47) have significantly (p<0.001, Mann-Whitney U test) more CD15NG/focal point than cases with negative microbiological diagnosis (n=44). 50 CD15NG/focal point were identified as the optimum threshold when diagnosing infection of periprosthetic joints using the CD15 focus score. If the microbiological findings are used as a ‘gold standard’ the diagnostic sensitivity is 0.83, specificity is 0.864. (PPV: 0.87; NPV: 0.83; accuracy 0.846; AUC: 0.878.) The evaluation findings for the preparations using the CD15 Quantifier (n=31) deviated in an average of 12 cells from the histopathological evaluation findings (CD15focus score). From a cell-count greater 62 CD15 Quantifier needs on average 32 seconds less than the diagnostic pathologist. Conclusion. The CD15 focus score, and the use of the «CD15 Quantifier» software which is thereby made possible, offers an automated procedure which shortens the mentally tiring and time-consuming process of microscopic cell-counting. The proposed diagnostic algorithm (how to use the CD15 focus score and the quantification software, CD15 Quantifier) may contribution towards the standardisation for periprosthetic joint infection and diagnosing bacterial infections in the SLIM.

About the authors

V. Krenn

Zentrum für Histologie, Zytologie und Molekulare Diagnostik

Author for correspondence.
Email: v.Krenn@patho-trier.de
Russian Federation

B. Kölbel

Zentrum für Histologie, Zytologie und Molekulare Diagnostik

Email: noemail@neicon.ru
Russian Federation

S. Wienert

VMscope GmbH

Email: noemail@neicon.ru
Russian Federation

J. Dimitriadis

Universität Trier

Email: noemail@neicon.ru
Russian Federation

D. Kendoff

HELIOS ENDO-Klinik

Email: noemail@neicon.ru
Russian Federation

T. Gehrke

HELIOS ENDO-Klinik

Email: noemail@neicon.ru
Russian Federation

M. Huber

Pathologisch-bakteriologisches Institut, Otto Wagner Spital

Email: noemail@neicon.ru
Russian Federation

L. Frommelt

HELIOS ENDO-Klinik

Email: noemail@neicon.ru
Russian Federation

A. Tiemann

Klinik für Orthopädie und Unfallchirurgie, SRH Zentralklinikum Suhl

Email: noemail@neicon.ru
Russian Federation

S. Usbeck

CeramTec GmbH

Email: noemail@neicon.ru
Russian Federation

V. Atzrodt

CeramTec GmbH

Email: noemail@neicon.ru
Russian Federation

K. Saeger

VMscope GmbH

Email: noemail@neicon.ru
Russian Federation

S. A. Bozhkova

Vreden Russian Research Institute of Traumatology and Orthopedics

Email: noemail@neicon.ru
Russian Federation

References

  1. Banit D.M., Kaufer H., Hartford J.M. Intraoperative frozen section analysis in revision total joint arthroplasty. Clin Orthop. 2002; (401):230-238.
  2. Fink B., Makowiak C., Fuerst M., Berger I., SchäferP., Frommelt L. The value of synovial biopsy, joint aspiration and C-reactive protein in the diagnosis of late peri-prosthetic infection of total knee replacements. J Bone Joint Surg. 2008; 90-B:874-878.
  3. Fink B., Gebhard A., Fuerst M., Berger I., SchäferP. High diagnostic valueof synovial biopsyin periprosthetic joint infectionof the hip. Clin Orthop. 2013; 471:956-964.
  4. Knapp W.Leucocyte typing IV:whitecell differentiation antigens.Oxford;NewYork:Oxford University Press,1989.
  5. Krenn V., Morawietz L., Burmester G.R.,Kinne R.W., Mueller-Ladner U.,Muller B.,Haupl T.Synovitisscore: discriminationbetween chronic low-grade and high-grade synovitis. Histopathology. 2006; 49(4):358-364.
  6. Krenn V., Morawietz L., Perino G., Kienapfel H., Ascherl R., Hassenpflug G.J., Thomsen M., Thomas P., Huber M., Kendoff D., Baumhoer D., Krukemeyer M.G.,Natu S., Boettner F., Zustin J.,Kölbel B.,Rüther W., Kretzer J.P., Tiemann A.,Trampuz A., Frommelt L., Tichilow R.,Söder S.,Müller S.,Parvizi J., Illgner U., Gehrke T. Revised histopathological consensus classificationof joint implant related pathology. Pathol Res Pract. 2014; 210(12):779-786.
  7. Lonner J.H.,Desai P., Dicesare P.E., Steiner G., Zuckerman J.D. The reliability of analysis of intraoperative frozen sections for identifying active infection during revision hip or knee arthroplasty. J Bone Joint Surg Am. 1996;78:1553-1558.
  8. Morawietz L., Classen R.A., Schröder J.H., Dynybil C., Perka C., Skwara A., Neidel J., Gehrke T., Frommelt L., Hansen T., Otto M., Barden B., Aigner T., Stiehl P., Schubert T., Meyer-Scholten C.,König A., Ströbel P., Rader C.P., Kirschner S., Lintner F.,Rüther W., Bos I,. Hendrich C., Kriegsmann J., Krenn V. Proposalfora histopathological consensus classificationofthe periprosthetic interface membrane. J Clin Pathol. 2006; 59(6):591-597.
  9. Morawietz L., GehrkeT., ClaßenR.A.,BardenB.,OttoM., HansenT., AignerT., StiehlP., Neidel J., Schröder J.H., Frommelt L., SchubertT., Meyer-Scholten C.,König A., StröbelP., Rader C.P., Kirschner S., LintnerF.,RütherW., Skawara A., Bos I., Kriegsmann J., KrennV.Vorschlagfür eine Konsensus-Klassifikation der periprothetischen Membran gelockerterHüft-und Knieendoprothesen. Pathologe. 2004; 25(5):375-384.
  10. Morawietz L.,Tiddens O.,Mueller M.,Tohtz S.,Gansukh T.,Schroeder J.H.,Perka C.,Krenn V.Twenty-three neutrophil granulocytes in 10 high-power fields is the best histopathological threshold to differentiate between aseptic and septic endoprothesis loosening. Histopathology. 2009; 54:847-853.
  11. Munro J.M.,Lo S.K., Corless C., Robertson M.J.,Lee N.C., Barnhill R.L.,Weinberg D.S., Bevilacqua M.P. Expressionof sialyl-Lewis X, an E-selectin ligand, in inflammation, immune processes and lymphoid tissues. Am J Pathol. 1992; 141(6):1397-1408.
  12. Pandey R., Drakoulakis E., Athanasou N.A. An assessment of the histological criteria used to diagnose infection in hip revision arthroplasty tissues. J Clin Pathol. 1999; 52:118-123.
  13. Ruifrok A.C., Johnston D.A. Qualificationofhistochemical stainingbycolor deconvolution. Anal Quant Cytol Histol. 2001; 23:291-299.
  14. Scholzen T.,Gerdes J.The KI-67 protein: from the known and the unkown. J Cell Physiol. 2000; 182:311-322.
  15. Wienert S., Heim D., Saeger K., Stenzinger A., Beil M., HufnaglP., Dietel M., Denkert C., KlauschenF. Detection and segmentation of cell nucleiin virtual microscopy images:a minimum-model approach. Sci Rep. 2012; 2:503.
  16. Wienert S., Heim D., Kotani M., Lindequist B., Stenzinger A., Ishii M., HufnaglP., Beil M., Dietel M., Denkert C., KlauschenF. CognitonMaster: an object-based image analysis framework. Diagn Pathol. 2013; 8:34.
  17. Zmistowski B., DellaValle C., Bauer T.W., Malizos K.N. Diagnosisof periprothetic joint infection. J Orthop Res. 2014; 32:98-107.

Copyright (c) 2015



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies