Bone Tissue Properties after Lanthanum Zirconate Ceramics Implantation: Experimental Study

Cover Page

Abstract

Background. The ceramic based on lanthanum zirconate is characterized by optimal mechanical characteristics, low corrosion potential and the absence of cytotoxicity. Thus, the possibility of its use as bone substituting material is currently studied. The purpose of the study was to determine the mechanical, morphological and x-ray spectral characteristics of bone tissue after implantation of ceramic material based on lanthanum zirconate. Materials and methods. The experiment was conducted on 27 female guinea pigs of a single line, divided into 3 groups of 9 animals each. In the main group (LZ), lanthanum zirconate rods were implanted. In the comparison group (b-TCP), fixation was performed with b-tricalcium phosphate rods. In the native control group (NC) no surgical procedures were performed. A fracture was created in distal metadiaphysis area of femur using open osteoclasia. Animals were hatched 4, 10, and 25 weeks after the start of the experiment. Bone tissue features were studied in the perifocal region. The following methods were used: uniaxial compression, scanning electron microscopy (SEM), energy dispersive x-ray microanalysis (EDxMA). The statistical analysis was performed using the Mann-Whitney test. Results. The architectonics of the newly formed bone in the LZ group appeared as a developed lacunar tubular network. The structural components of the extracellular matrix were oriented along the bone functional load vectors. The Ca/P ratio in the periimplant region of the bone in the LZ group was significantly higher than in the b-TCP and NC groups. This may indicate a high strength of the newly formed bone. Mechanical testing showed that the strength and performance of the system of “lanthanum zirconate – bone” under uniaxial compression exceeded the similar indicators in the b-TCP group. Conclusion. The synthesized new material based on lanthanum zirconate seems promising for use in traumatology and orthopedics. Although, additional studies are needed to optimize these implants integration into bone tissue.

About the authors

M. Yu. Izmodenova

Ural State Medical University

Author for correspondence.
Email: izmodenova96@gmail.com
ORCID iD: 0000-0002-5500-4012

Maria Yu. Izmodenova — Student

Ekaterinburg

Russian Federation

M. V. Gilev

Ural State Medical University; Institute of High Temperature Electrochemistry

Email: fake@neicon.ru
ORCID iD: 0000-0003-4623-5190

Mikhail V. Gilev — Dr. Sci. (Med.), Associate Professor

Ekaterinburg

Russian Federation

M. V. Ananyev

Institute of High Temperature Electrochemistry

Email: fake@neicon.ru
ORCID iD: 0000-0002-6581-1221

Maxim V. Ananyev — Dr. Sci. (Chem.), Director

Ekaterinburg

Russian Federation

D. V. Zaytsev

Institute of High Temperature Electrochemistry; Ural Federal University

Email: fake@neicon.ru
ORCID iD: 0000-0002-8045-5309

Dmitry V. Zaytsev — Dr. Sci. (Phys.-Math.), Associate Professor, Institute of Natural Sciences and Mathematics, Ural Federal University; Leading Researcher, Institute of High Temperature Electrochemistry 

Ekaterinburg

Russian Federation

I. P. Antropova

Ural State Medical University; Institute of High Temperature Electrochemistry

Email: fake@neicon.ru
ORCID iD: 0000-0002-9957-2505

Irina P. Antropova — Dr. Sci. (Biol.), Leading Researcher

Ekaterinburg

Russian Federation

E. S. Farlenkov

Institute of High Temperature Electrochemistry; Ural Federal University

Email: fake@neicon.ru
ORCID iD: 0000-0001-5507-7783

Andrei S. Farlenkov — Researcher, Solid State Electrochemistry Department, Laboratory of SOFC, Institute of High Temperature Electrochemistry; Researcher, Ural Federal University

Ekaterinburg

Russian Federation

E. S. Tropin

Institute of High Temperature Electrochemistry; Ural Federal University

Email: fake@neicon.ru
ORCID iD: 0000-0003-4180-6054

Evgenii S. Tropin — Researcher, Solid State Electrochemistry Department, Laboratory of SOFC, Institute of High Temperature Electrochemistry; Researcher, Ural Federal University 

Ekaterinburg

Russian Federation

E. A. Volokitina

Ural State Medical University

Email: fake@neicon.ru
ORCID iD: 0000-0001-5994-8558

Elena A. Volokitina — Dr. Sci. (Med.), Professor

Ekaterinburg

Russian Federation

S. M. Kutepov

Ural State Medical University

Email: fake@neicon.ru
ORCID iD: 0000-0002-3069-8150

Sergey M. Kutepov — Dr. Sci. (Med.), Professor

Ekaterinburg

Russian Federation

B. G. Yushkov

Institute of Immunology and Physiology

Email: fake@neicon.ru
ORCID iD: 0000-0003-4641-7322

Boris G. Yushkov — Dr. Sci. (Med.), Professor

Ekaterinburg

Russian Federation

References

  1. Гилев М.В., Зайцев Д.В., Измоденова М.Ю., Киселева Д.В., Волокитина Е.А. Влияние типа остеозамещающего материала на основные механические параметры трабекулярной костной ткани при аугментации импрессионного внутрисуставного перелома. экспериментальное исследование. Гений ортопедии. 2018;24(4):492-499. doi: 10.18019/1028-4427-2018-24-4-492-499.
  2. Гилев М.В., Зайцев Д.В., Измоденова М.Ю., Киселева Д.В., Силаев В.И. Сравнительная характеристика методов аттестации деформированной микроструктуры трабекулярной костной ткани. Российский журнал биомеханики. 2019;23(2):242-250. doi: 10.15593/RJBiomech/2019.2.06.
  3. Дубров В.Э., Щербаков И.М., Сапрыкина К.А., Кузькин И.А., Зюзин Д.А., Яшин Д.В. Математическое моделирование состояния системы «костьметаллофиксатор» в процессе лечения чрезвертельных переломов бедренной кости. Травматология и ортопедия России. 2019;25(1):113-121. doi: 10.21823/2311-2905-2019-25-1-113-121.
  4. Depprich R., Naujoks C., Ommerborn M., Schwarz F., Kübler N.R., Handschel J. Current findings regarding zirconia implants. Clin Implant Dent Relat Res. 2014;16(1): 124-137. doi: 10.1111/j.1708-8208.2012.00454.x.
  5. Bankoğlu Güngör M., Aydın C., yılmaz H., Gül E.B. An overview of zirconia dental implants: basic properties and clinical application of three cases. J Oral Implantol. 2014;40(4):485-494. doi: 10.1563/AAID-JOI-D-12-00109.
  6. Gremillard L., Chevalier J., Martin L., Douillard T., Begand S., Hans K. et al. Sub-surface assessment of hydrothermal ageing in zirconia-containing femoralheads for hip joint applications. Acta Biomater. 2018;68:286-295. doi: 10.1016/j.actbio.2017.12.021.
  7. Larsson C. Zirconium dioxide based dental restorations. Studies on clinical performance and fracture behavior. Swed Dent J Suppl. 2011;(213):9-84.
  8. Aboushelib M.N. Influence of surface nano-roughness on osseointegration of zirconia implants in rabbit femur heads using selective infiltration etching technique. J Oral Implantol. 2013;39(5):583-590. doi: 10.1563/AAID-JOI-D-11-00075.
  9. Larsson C., El Madhoun S., Wennerberg A., Vult von Steyern P. Fracture strength of yttria-stabilized tetragonal zirconia polycrystals crowns with different design: an in vitro study. Clin Oral Implants Res. 2012;23(7): 820-826. doi: 10.1111/j.1600-0501.2011.02224.x.
  10. Schubert O., Nold E., Obermeier M., Erdelt K., Stimmelmayr M., Beuer F. Load bearing capacity, fracture mode, and wear performance of digitally veneered full-ceramic single crowns. Int J Comput Dent. 2017;20(3):245-262.
  11. Miyazaki T., Nakamura T., Matsumura H., Ban S., Kobayashi T. Current status of zirconia restoration. J Prosthodont Res. 2013;57(4):236-261. doi: 10.1186/s12903-019-0838-x.
  12. Arena A., Prete F., Rambaldi E., Bignozzi M.C., Monaco C., Di Fiore A. et al. Nanostructured zirconiabased ceramics and composites in dentistry: a state-of-the-art review. Nanomaterials (Basel). 2019;9(10). pii: E1393. doi: 10.3390/nano9101393.
  13. Zarone F., Russo S., Sorrentino R. From porcelainfused-to-metal to zirconia: clinical and experimental considerations. Dent Mater. 2011;27(1):83-96. doi: 10.1016/j.dental.2010.10.024.
  14. Zhang y., Lawn B.R. Novel zirconia materials in dentistry. J Dent Res. 2018;97(2):140-147. doi: 10.1177/0022034517737483.
  15. Pereira G.K.R., Fraga S., Montagner A.F., Soares F.Z.M., Kleverlaan.CJ., Valandro L.F. The effect of grinding on the mechanical behavior of y-TZP ceramics: A systematic review and meta-analyses. J Mech Behav Biomed Mater. 2016;63:417-442. doi: 10.1016/j.jmbbm.2016.06.028.
  16. Ferrari M., Vichi A., Zarone F. Zirconia abutments and restorations: from laboratory to clinical investigations. Dent Mater. 2015;31(3):e63-76. doi: 10.1016/j.dental.2014.11.015.
  17. Manicone P.F., Rossi Iommetti P., Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications. J Dent. 2007;35(11):819-826.
  18. Le M., Papia E., Larsson C. The clinical success of tooth- and implant-supported zirconia-based fixed dental prostheses. A systematic review. J Oral Rehabil. 2015;42(6):467-480. doi: 10.1111/joor.12272.
  19. Zarone F., Di Mauro M.I., Ausiello P., Ruggiero G., Sorrentino R. Current status on lithium disilicate and zirconia: a narrative review. BMC Oral Health. 2019;4; 19(1):134.
  20. Lawson N.C., Burgess J.O. Dental ceramics: a current review. Compend Contin Educ Dent. 2014;35(3):161-166; quiz 168.
  21. Siddiqi A., Khan A.S., Zafar S. Thirty years of translational research in zirconia dental implants: a systematic review of the literature. J Oral Implantol. 2017;43(4):314-325. doi: 10.1563/aaid-joi-D-17-00016.
  22. Tabatabaian F. Color in zirconia-based restorations and related factors: literature review. J Prosthodont. 2018;27(2):201-211. doi: 10.1111/jopr.12740.
  23. Chen y.W., Moussi J., Drury J.L., Wataha J.C. Zirconia in biomedical applications. Expert Rev Med Devices. 2016;13(10):945-963.
  24. Cavalcanti A.N., Foxton R.M., Watson T.F., Oliveira M.T., Giannini M., Marchi G.M. y-TZP ceramics: key concepts for clinical application. Oper Dent. 2009;34(3):344-51. doi: 10.2341/08-79.
  25. Shahmiri R., Standard O.C., Hart J.N., Sorrell C.C. Optical properties of zirconia ceramics for esthetic dental restorations: a systematic review. J Prosthet Dent. 2018;119(1):36-46. doi: 10.1016/j.prosdent.2017.07.009.
  26. Özcan M., Bernasconi M. Adhesion to zirconia used for dental restorations: a systematic review and meta-analysis. J Adhes Dent. 2015;17(1):7-26. doi: 10.3290/j.jad.a33525.
  27. Turon-Vinas M., Anglada M. Strength and fracture toughness of zirconia dental ceramics. Dent Mater. 2018;34(3):365-375. doi: 10.1016/j.dental.2017.12.007.
  28. Piconi C., Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999;20(1):1-25. doi: 10.1111/joor.12272.
  29. Gredes T. et al. Comparison of surface modified zirconia implants with commercially available zirconium and titanium implants. Implant Dent. 2014;23(4):1-15.
  30. Koutayas S.O., Vagkopoulou T., Pelekanos S., Koidis P., Strub J.R. Zirconia indentistry: part 2. Evidence-based clinical breakthrough. Eur J Esthet Dent. 2009;4(4):348-380.
  31. Арутюнов С.Д., Шехтер А.Б., Степанов А.г. Оценка эффективности остеоинтеграции фрезерованных трансдентальных имплантатов из диоксида циркония по результатам эксперимента invivo. Вестник КазНМУ. 2018;(1):533-535.
  32. Blatz M.B., Vonderheide M., Conejo J. The effect of resin bonding on long-term success of highstrength ceramics. J Dent Res. 2018;97(2):132-139. doi: 10.1177/0022034517729134.

Statistics

Views

Abstract: 303

Dimensions

Article Metrics

Metrics Loading ...

PlumX


Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies