The effect of water, various incorporations and substitutions on physical and chemical properties of bioapatite and mechanical properties of bone tissue

Cover Page

Abstract

Basing on scientific publications and original research the authors specified the effect of incorporation and adsorption of different ions and water molecules on physical, chemical and mechanical properties of bioapatite and determined new directions for investigations of intercrystallite interactions in nanoscale. Inner structure of the apatite crystallites more adaptable to chemical substitutions in comparison with other minerals controls their important characteristics such as a size, solubility, hardness, fragility, formability and thermal stability. The water molecules incorporated in crystallites and adsorbed on their surfaces stabilize them. In case the distances between crystallites become shorter than 10 nm the water molecules adsorbed on their surface play dominant role in bonding between the crystallites. This bond determines the main mechanical properties of bones. We bring forward a suggestion that theoretical model developed on the basis of near edge X-ray spectroscopic studies of bones using the contemporary high brilliant sources of X-ray radiation (synchrotrons and X-ray free electrons lasers) will allow to receive new quantitative data on local electronic and atomic structure (coordination numbers, ionic charges, interatomic distances interatomic and intercrystallite forces) of nanoelements in osseous tissue. The investigation results must bring to construction of new morphologically correct model providing deeper understanding of processes occurring in mineral matrix and mechanical properties of bones.

About the authors

A. S. Avrunin

Vreden Russian Research Institute of Traumatology and Orthopedics

Author for correspondence.
Email: a_avrunin@mail.ru
Russian Federation

Y. I. Denisov-Nikolsky

All-Russian Research Institute on Medicinal and Aromatic Plants

Email: noemail@neicon.ru
Russian Federation

A. A. Doktorov

All-Russian Research Institute on Medicinal and Aromatic Plants

Email: noemail@neicon.ru
Russian Federation

Y. S. Krivosenko

Saint-Petersburg State university

Email: noemail@neicon.ru
Russian Federation

D. O. Samoylenko

Saint-Petersburg State university

Email: noemail@neicon.ru
Russian Federation

A. A. Pavlychev

Saint-Petersburg State university

Email: noemail@neicon.ru
Russian Federation

I. I. Shubnyakov

Vreden Russian Research Institute of Traumatology and Orthopedics

Email: noemail@neicon.ru
Russian Federation

References

  1. Аврунин А.С., Корнилов Н.В. Асимметрия параметров - основа структуры пространственно-временной организации функций. Морфология. 2000; (2):80-85.
  2. Аврунин А.С., Корнилов Н.В., Суханов А.В., Паршин В.А. Объективное деление посттравматического адаптационного каскада на основе хронобиологических характеристик асимметрии пространственновременной организации функций. Травматология и ортопедия России. 2000; (2-3):20-25.
  3. Аврунин А.С., Тихилов Р.М., Аболин А.Б., Щербак И.Г. Лекция по остеологии. Многоуровневый характер структуры минерального матрикса и механизмы его формирования. Гений ортопедии. 2005; (2):89-94.
  4. Аврунин А.С., Тихилов Р.М., Аболин А.Б., Щербак И.Г., уровни организации минерального матрикса костной ткани и механизмы, определяющие параметры их формирования (аналитический обзор). Морфология. 2005; (2):78-82.
  5. Аврунин А.С., Тихилов Р.М., Шубняков И.И., Паршин Л.А., Мельников Б.Е., Плиев Д.Г. Иерархия спиральной организации структур скелета. Взаимосвязь структуры и функции Морфология. 2010; (6):69-75.
  6. Аврунин А.С., Тихилов Р.М. Остеоцитарное ремоделирование костной ткани: история вопроса, морфологические маркеры. Морфология. 2011; (1):86-94.
  7. Аврунин А.С. Остеоцитарное ремоделирование. История вопроса, современные представления и возможности клинической оценки. Травматология и ортопедия России. 2012; (1):128-134.
  8. Аврунин А.С., Тихилов Р.М., Шубняков И.И., Паршин Л.К., Мельников Б.Е. Критический анализ теории механостата. Часть I. Механизмы реорганизации архитектуры скелета. Травматология и ортопедия России. 2012; (2):105-115.
  9. Виноградов А.С., Акимов В.Н., Зимкина Т.М., Павлычев А.А. Припороговые резонансы в рентгеновских спектрах поглощения молекул и твердых тел. Известия АНСССР (серия физ.). 1985; 49(8):1458-1462.
  10. Данильченко С.Н. Структура и свойства апатитов кальция с точки зрения биоминералогии и биоматериаловедения (обзор). Вiсник СумДУ. Серiя Фiзика, математика, механiка. 2007; (2):33-59.
  11. Денисов-Никольский Ю.И., Миронов С.П., Омельяненко Н.П., Матвейчук И.В. Актуальные проблемы теоретической и клинической остеоартрологии. М. : ОАО «Типография «Новости»; 2005. 336 с.
  12. Докторов А.А., Денисов-Никольский Ю.И. Особенности рельефа минерализованной поверхности лакун и канальцев в пластинчатой кости. Бюл. эксперим. медицины. 1993; 119(1):61-65.
  13. Докторов А.А., Денисов-Никольский Ю.И., Жилкин Б.А. Структурная организация костного минерала. Бюл. эксперим. медицины. 1996; 122(12):687-691.
  14. ЖилкинБ.А.,Денисов-НикольскийЮ.И.,ДокторовА.А. Особенности строения пластинчатой кости позвонков человека при возрастной инволюции и остеопорозе. Бюл. эксперим. медицины. 2003; 135(4):476-480.
  15. Жилкин Б.А., Денисов-Никольский Ю.И., Докторов А.А., Структурная организация минерального компонента пластинчатой кости и процесс его формирования. Успехи современной биологии. 2003; 123(6):590-598.
  16. Клюшина Е.С., Кривосенко Ю.С., Павлычев А.А. Пространственно-временные динамические системы в фотоионизации внутренней оболочки для свободных молекул, кластеров и твердых тел. Совр. математика. Фундам. направления. 2013; 48:61-74.
  17. Корнилов Н.В., Аврунин А.С. Причинно-следственная связь характера экстремального воздействия, его силы и структуры пространственно-временной организации функций организма. Процесс адаптации. Медицинский академический журнал. 2002; (3):99-103
  18. Ньюман у., Ньюман М. Минеральный обмен кости. М., Изд-во иностранной литературы, 1961. 270 с.
  19. Павлычев А.А., Виноградов А.С., Степанов А.П., Шулаков А.С. Динамические эффекты формирования локализованных состояний в ультрамягкой рентгеновской области спектра. опт. спектроскопия. 1993; 75:554-578.
  20. Aziz E.F., Ottosson N., Faubel M., Hertel I.V., Winter B. Interaction between liquid water and hydroxide revealed by core-hole de-excitation. Nature. 2008; 455(7209):89-91.
  21. Baig A.A., Fox J.L., Young R.A., Wang Z., Hsu J., Higuchi W.I., Chhettry A., Zhuang H., Otsuka M. Relationships among carbonated apatite solubility, crystallite size, and microstrain parameters. Calcif Tissue Int. 1999; 64(5):437-449.
  22. Blair H.C., Simonet S., Lacey D.L., Zaidi M. Osteoclast biology. P.113-139. In book: Fundamentals of Osteoporosis. Amsterdam, Boston, Heidelberg, London: Elsevier Inc.; 2010. 122 s.
  23. Brown M.A., Faubel M., Winter B. X-ray photo- and resonant Auger-electron spectroscopic studies of liquid water and aqueous solutions. Annu Rep Prog Chem. 2009; 105:174-212.
  24. Currey J. Sacrificial bonds heal bone. Nature. 2001; 414(6865):699.
  25. Dauphin Y., Cuif J.-P., Salome M., Susini J., Williams C.T. Microstructure and chemical composition of giant avian eggshells. Anal Bioanal Chem. 2006; 386:1761-1771.
  26. Eisa M.H., Hao Shen, Yong Mi, Kamarualaziz I., Khalid M.H. Measurement of chemical composition of bone by X-ray absorption fine structure. J Science Technology. 2011; 13:109-117.
  27. Fantner G.E., Hassenkam T., Kindt J.H., Weaver J.С., Birkedal H., Pechenik L., Cutroni J.A., Cidade G.A.G., Stucky G.D., Morse D.E., Hansma P.K. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat mater. 2005; 4(8):612-616.
  28. Filatova E.O., Pavlychev A.A. X-ray optics and inner-shell electronics of hexagonal BN (series: Biochemistry research trends). New York: Nova Science Publishers; 2011. 108 s.
  29. Frank-Kamenetskaya O., Koltsov A., Kuzmina M., Zorina M., Poritskaya L. Ion substitutions and nonstoichiometry of carbonated apatite-(CaOH) synthesised by precipitation and hydrothermal methods. J Molecular Structure. 2011; 992(13):9-18.
  30. Frost H.M. Defining osteopenias and osteoporoses: another view (with insights from a new paradigm). Bone. 1997; 20(5):385-391.
  31. Frost H.M. New targets for the studies of biomechanical, endocrinologic, genetic and pharmaceutical effects on bones: bone’s»nephron equivalents», muscle, neuromuscular physiology. J Musculoskeletal Research. 2000; 4(2):67-84.
  32. Krivosenko Yu.S., Pavlychev A.A. Photoion recoil effect on 1s photoelectron line as a probe of adsorbate-substrate interaction. Chem Phys Lett. 2013; 575:107-111.
  33. Loong C.-K., Rey C., Kuhn L. T., Combes C., Wu Y., Chen S.-H., Glimch M.J. Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study. Bone. 2000; 26(6):599-602.
  34. Morris M.D., Finney W.F. Recent developments in Raman and infrared. spectroscopy and imaging of bone tissue. Spectroscopy. 2004; 18:155-159.
  35. Nyman J.S., Ni Q., Nicolella D.P., Wang X. Measurements of mobile and bound water by nuclear magnetic resonance correlate with mechanical properties of bone. Bone. 2008; 42:193-199.
  36. Olszta M.J., Odom D.J., Douglas E.P., Gower L.B. A new paradigm for biomineral formation: mineralization via an amorphous liquid-phase precursor. Connective Tissue Research. 2003; 44(Suppl. 1):326-334.
  37. Pasteris J.D., Wopenka B., Valsami-Jones E. Bone and tooth mineralization: why apatite? Elements. 2008; 4:97-104.
  38. Pasteris J.D., Yoder C.H., Wopenka B. Molecular water in nominally unhydrated carbonated hydroxylapatite: The key to a better understanding of bone mineral. American Mineralogist. 2014; 99:16-27.
  39. Penel G., Leroy G., Rey C., Bres E. MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int. 1998; 63(6):475-481.
  40. Rai R.K., Barbhuyan T., Singh C., Mittal M., Khan M.P., Sinha N., Chattopadhyay N. Total water, phosphorus relaxation and inter-atomic organic to inorganic interface are new determinants of trabecular bone integrity. PLoS One. 2013; 8(12)e83478:1-10. Rajendran J., Gialanella S., Aswath P.B. XANES analysis of dried and calcined bones. Materials Science and Engineering C. 2013; 33(7):3968-3979.
  41. Rey C., Renugopalakrishnan V., Collins B., Glimcher M.J. Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging. Calcif Tissue Int. 1991; 49(4):251-258.
  42. Rey C., Renugopalakrishnan V., Shimizu M., Collins B., Glimcher M.J. A resolution-enhanced Fourier transform infrared spectroscopic study of the environment of the CO3(2) ion in the mineral phase of enamel during its formation and maturation. Calcif Tissue Int. 1991; 49(4):259-268.
  43. Rey C., Miquel J.L., Facchini L., Legrand A.P., Glimcher M.J. Hydroxyl groups in bone mineral. Bone. 1995; 16(5):583-586. a. Robinson R.A., Elliott S.R. The Water Content of Bone. I. The mass of water, inorganic crystals, organic matrix, and “CО2 space” components in a unit volume of dog bone. J Boneand Joint Surgery Аm. 1957; 39(1):167-188.
  44. Robinson R.A. Crystal-Collagen-Water Relationships in Bone Matrix. Clin Ortopaedics. 1960; (17):69-76.
  45. Roufosse A.H., Aue W.P., Roberts J.E., Glimcher M.J., Griffin R.G. Investigation of the mineral phases of bone by solid-state phosphorus-31 magic angle sample spinning nuclear magnetic resonance. Biochemistry. 1984; 23(25):6115-6120.
  46. Rubin M.A., Jasiuk I., Taylor J., Rubin J., Ganey T., Apkarian R.P. TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone. 2003; 33(3):270-282.
  47. Rulis P., Ouyang L., Ching W.Y. Electronic structure and bonding in calcium apatite crystals: Hydroxyapatite, fluorapatite, chlorapatite, and bromapatite. Physical Review В. 2004; 70:155104-1-7.
  48. Sowrey F.E., Skipper L.J., Pickup D.M., Drake K.O., Lin Z., Smith M.E., Newport R.J. Systematic empirical analysis of calcium-oxygen coordination environment by calcium K-edge XANES. Phys Chem. Chem Phys. 2004; 6:188-192.
  49. Stöhr J. NEXAFS-spectroscopy. Berlin: Springer; 1992, 404 p.
  50. Taylor A.J., Rendina E., Smith B.J., Zhou D.H. Analyses of mineral specific surface area and hydroxyl substitution for intact bone. Chemical Physics Letters. 2013; 588:124-130.
  51. Thompson J.B., Kindt J.H., Drake B., Hansma I.G., Morse D.E., Hansma P.K. Bone indentation recovery time correlates with bond reforming time. Nature. 2001; 414(13):773-775.
  52. Tong W., Glimcher M.J., Katz J.L., Kuhn L., Eppell S.J. Size and shape of mineralites in young bovine bone measured by atomic force microscopy. Calcif Tissue Int. 2003;72(5):592-598.
  53. Wilson E.E., Awonusi A., Morris M.D., Kohn D.H., Tecklenburg M.M.J., Beck L.W. Highly ordered interstitial water observed in bone by nuclear magnetic resonance. Journal of bone and mineral research. 2005; 20(4):625-634.
  54. Wilson E.E., Awonusi A., Morris M.D., Kohn D.H., Tecklenburg M.M.J., Beck L.W. Three structural roles for water in bone observed by solid-state NMR. Biophysical Journal. 2006; 90:3722-3731.
  55. Wopenka B., Pasteris J.D. A mineralogical perspective on the apatite in bone. Materials Science and Engineering C. 2005; 25(2):131-143.
  56. Yin X., Stott M.J. Biological calcium phosphates and Posner’s cluster. J Chem Phys. 2003; 118(8)3717-3723.
  57. Yoder C.H., Pasteris J.D., Worcester K.N., Schermerhorn D.V. Structural water in carbonated hydroxylapatite and fluorapatite: confirmation by solid state 2H NMR. Calcif Tissue Int. 2012; 90(1):60-67.

Statistics

Views

Abstract: 397

Cited-by

CrossRef: 7

  1. Brykalova XO, Kornilov NN, Cherny AA, Rykov YA, Pavlychev AA. Electronic and atomic structure of subchondral femoral bone in intact and osteoarthritic knee compartments. The European Physical Journal D. 2019;73(6). doi: 10.1140/epjd/e2019-100114-8
  2. Zolotarev VM. Investigation of the Inductive-Resonant Interaction of Water Clusters in Fluorapatite Minerals Using Polarization IR and Raman Spectroscopy. Optics and Spectroscopy. 2018;125(2):218. doi: 10.1134/S0030400X18080246
  3. Sakhonenkov S, Konashuk A, Brykalova X, Cherny A, Kornilov N, Rykov Y, et al. Nanostructure of bone tissue probed with Ca 2p and O 1s NEXAFS spectroscopy. Nano Express. 2021;2(2):020009. doi: 10.1088/2632-959X/abf3a5
  4. Zolotarev VM. Polarized IR and Raman spectra of (H2O)n clusters (n = 2–5) in the c-channels of apatite single crystals. Optics and Spectroscopy. 2017;123(5):717. doi: 10.1134/S0030400X17110224
  5. Konashuk AS, Samoilenko DO, Klyushin AY, Svirskiy GI, Sakhonenkov SS, Brykalova XO, et al. Thermal changes in young and mature bone nanostructure probed with Ca 2p excitations. Biomedical Physics & Engineering Express. 2018;4(3):035031. doi: 10.1088/2057-1976/aab92b
  6. Pavlychev AA, Avrunin AS, Vinogradov AS, Filatova EO, Doctorov AA, Krivosenko YS, et al. Local electronic structure and nanolevel hierarchical organization of bone tissue: theory and NEXAFS study. Nanotechnology. 2016;27(50):504002. doi: 10.1088/0957-4484/27/50/504002
  7. Samoilenko DO, Avrunin AS, Pavlychev AA. Hierarchy effect on electronic structure and core-to-valence transitions in bone tissue: perspectives in medical nanodiagnostics of mineralized bone. The European Physical Journal D. 2017;71(7). doi: 10.1140/epjd/e2017-80051-8

Dimensions

Article Metrics

Metrics Loading ...

PlumX


Copyright (c) 2015



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies