ЕFFECTIVENESS OF FOUR-ROD FIXATION FOR PEDICLE SUBTRACTION SPINAL OSTEOTOMY

Cover Page


Cite item

Abstract

Introduction. Pedicle subtraction osteotomy (PSO) provides for significant segmental correction of the sagittal balance of the spine. At the same time, the technique is associated with a high risk of complications, with rod fracture at the osteotomy site being the most common.

 The purpose of this study — to assess the effectiveness of four-rod fixation compared to literature data on standard two-rod fixation in patients undergoing PSO.

 Materials and Methods. The study is a retrospective analysis of 47 consecutive patients with rigid spinal deformities, who underwent pedicle subtraction osteotomy at the lumbar level. The average age of the patients (33 females and 14 males) was 59.7 years. In all cases spinal fixation carried out using a four-rod construct with additional short rods at the osteotomy site. The minimal postoperative follow-up was 2 years. A detailed analysis of the radiographic data was carried out with calculation of the global sagittal balance and spinopelvic parameters. A detailed assessment of complications in the early and late postoperative periods was also performed. After an exhaustive review of literature, a comparative analysis was made of the four-rod fixation technique with current literature data on the frequency of complications (in particular, rod fractures in the osteotomy zone) after two-rod fixation.

 Results. In all cases the osteotomy was performed at one level, most often at L3 (49%). The average length of fixation was 9.8 segments. The average angle of segmental correction was 27.1°. In most cases, it was possible to achieve adequate correction of spinopelvic parameters. Among complications, bone resorption around screws was most prevalent (23.4% of cases). Proximal junctional kyphosis occurred in 12.8% of cases, neurologic deficit — in 14.9% of cases, infectious complications — in 10.6% cases. Asymptomatic pseudarthrosis, confirmed by CT data, was observed in 12.8% of patients. Rod fracture at the PSO site and adjacent segments was not observed in any of the cases. Rod fractures of other localization were observed in 10.6% of patients.

 Conclusion. According to the literature, the frequency of rod fractures at the osteotomy site is the most frequent complication of PSO. The results of this study showed that four-rod fixation in PSO significantly reduces the incidence of pseudarthrosis and rod fracture rate in the long-term follow-up and provides greater control over the process of osteotomy closure.

About the authors

A. A. Panteleyev

Priorov National Medical Research Center of Traumatology and Orthopedics.

Author for correspondence.
Email: fake@neicon.ru

Andrey A. Panteleyev — orthopedic surgeon, Spinal Pathology Department.

10, ul. Priorova , 127299, Moscow.

Russian Federation

S. P. Mironov

Priorov National Medical Research Center of Traumatology and Orthopedics.

Email: fake@neicon.ru

Sergey P. Mironov — Acad. RAS, Dr. Sci. (Med.), professor, director. 

10, ul. Priorova , 127299, Moscow.

Russian Federation

K. M. Buhtin

Priorov National Medical Research Center of Traumatology and Orthopedics.

Email: fake@neicon.ru

Kirill M. Buhtin — Cand. Sci. (Med.), academic secretary of the dissertation board.

10, ul. Priorova , 127299, Moscow.

Russian Federation

M. L. Sazhnev

Priorov National Medical Research Center of Traumatology and Orthopedics.

Email: fake@neicon.ru

Maxim L. Sazhnev — Cand. Sci. (Med.), orthopedic sur-geon, Spinal Pathology Department.

10, ul. Priorova , 127299, Moscow.

Russian Federation

A. I. Kazmin

Priorov National Medical Research Center of Traumatology and Orthopedics.

Email: fake@neicon.ru

Arkadiy I. Kazmin — Cand. Sci. (Med.), orthopedic surgeon, Spinal Pathology Department.

10, ul. Priorova , 127299, Moscow.

Russian Federation

V. S. Pereverzev

Priorov National Medical Research Center of Traumatology and Orthopedics.

Email: fake@neicon.ru

Vladimir S. Pereverzev — PhD student, Spinal Pathology Department.

10, ul. Priorova , 127299, Moscow.

Russian Federation

S. V. Kolesov

Priorov National Medical Research Center of Traumatology and Orthopedics.

Email: fake@neicon.ru

Sergey V. Kolesov — Dr. Sci. (Med.), head of the Spinal Pathology Department.

10, ul. Priorova , 127299, Moscow.

Russian Federation

References

  1. Schwab F., Blondel B., Chay E., Demakakos J., Lenke L., Tropiano P. et al. The comprehensive anatomical spinal osteotomy classification. Neurosurgery. 2014;74(1):112-120. doi: 10.1227/NEU.0000000000000182o.
  2. Hu X., Thapa A.J., Cai Z., Wang P., Huang L., Tang Y. et al. Comparison of Smith-Petersen osteotomy, pedicu-lar subtraction osteotomy, and poly-segmental wedge osteotomy in treating rigid thoracolumbar kyphotic de-formity in ankylosing spondylitis a systematic review and meta-analysis. Review. BMC Surg. 2016;22;16:4. doi: 10.1186/s12893-015-0118-x.
  3. Liu H., Yang C., Zheng Z., Ding W., Wang J., Wang H., Li S. Comparison of Smith-Petersen osteotomy and pedicle subtraction osteotomy for the correction of thoracolumbar kyphotic deformity in ankylosing spon-dylitis: a systematic review and meta-analysis. Review. Spine (Phila Pa 1976). 2015;40(8):570-579. doi: 10.1097/BRS.0000000000000815.
  4. Kose K.C., Bozduman O., Yenigul A.E., Igrek S. Spinal os-teotomies: indications, limits and pitfalls. EFORT Open Rev. 2017;2(3):73-82. doi: 10.1302/2058-5241.2.160069.
  5. Gupta S., Gupta M.C. The nuances of pedicle sub-traction osteotomies. Review. Neurosurg Clin N Am. 2018;29(3):355-363. doi: 10.1016/j.nec.2018.03.001.
  6. Saifi C., Laratta J.L., Petridis P., Shillingford J.N., Lehman R.A., Lenke L.G. Vertebral column resection for rigid spinal deformity. Global Spine J. 2017;7(3):280-290. doi: 10.1177/2192568217699203.
  7. Makhni M.C., Shillingford J.N., Laratta J.L., Hyun S.J., Kim Y.J. Restoration of sagittal balance in spinal de-formity surgery. Review. J Korean Neurosurg Soc. 2018;61(2):167-179. doi: 10.3340/jkns.2017.0404.013.
  8. Thomasen E. Vertebral osteotomy for correction of ky-phosis in ankylosing spondylitis. Clin Orthop Relat Res. 1985;(194):142-152.
  9. Wang M.Y., Berven S.H. Lumbar pedicle subtraction osteotomy. Neurosurgery. 2007;60(2 Suppl 1):140-146. doi: 10.1227/01.NEU.0000249240.35731.8F.
  10. Salvi G., Aubin C., Le Naveaux F., Wang X., Parent S. Biomechanical analysis of Ponte and pedicle subtrac-tion osteotomies for the surgical correction of ky-photic deformities. Eur Spine J. 2016;25(8):2452-2460. doi: 10.1007/s00586-015-4279-1.
  11. Hyun S-J., Kim Y.J., Rhim S-C. Spinal pedicle subtraction osteotomy for fixed sagittal imbalance patients. World J Clin Cases. 2013;1(8):242-248. doi: 10.12998/wjcc.v1.i8.242.
  12. Hyun S.J., Rhim S.C. Clinical outcomes and complica-tions after pedicle subtraction osteotomy for fixed sag-ittal imbalance patients: A long-term follow-up data. J Korean Neurosurg Soc. 2010;47(2):95-101. doi: 10.3340/jkns.2010.47.2.95.
  13. Cho K.J., Kim Y.T., Shin S.H. Suk S. Surgical treatment of adult degenerative scoliosis. Asian Spine J. 2014;8(3):371-381. doi: 10.4184/asj.2014.8.3.371.
  14. Daubs M.D., Lenke L.G., Cheh G., Stobbs G., Bridwell K.H. Adult spinal deformity surgery: Complications and outcomes in patients over age 60. Spine (Phila Pa 1976). 2007;32(20):2238-2244. doi: 10.1097/BRS.0b013e31814cf24a.
  15. Auerbach J.D., Lenke L.G., Bridwell K.H., Sehn J.K., Milby A.H., Bumpass D. et al. Major complications and com-parison between 3-column osteotomy techniques in 105 consecutive spinal deformity procedures. Spine (Phila Pa 1976). 2012;37(14):1198-1210. doi: 10.1097/BRS.0b013e31824fffde.
  16. Bianco K., Schwab F.J., Norton R.P., Smith J.S., Obeid I., Mundis G.M. et al. Complications and intercenter vari-ability of three-column osteotomies for spinal deformity surgery: A retrospective review of 423 patients. Spine J. 2013;13(9):S60-S61. doi: 10.1016/j.spinee.2013.07.172.
  17. Ferrero E., Liabaud B., Henry J.K. Sagittal alignment and complications following lumbar 3-column osteotomy: does the level of resection matter? J Neurosurg Spine. 2017;27(5):560-569. doi: 10.3171/2017.3.SPINE16357.
  18. Smith J.S., Gupta M.C., Klineberg E.O., Shaffrey C.I., Schwab F.J., Lafage V. et al. Complication rates as-sociated with 3-column osteotomy in 82 adult spinal deformity patients: retrospective review of a prospec-tively collected multicenter consecutive series with min-imum two-year follow-up [abstract]. J Neurosurg Spine. 2017;16(10):S376-S377. doi: 10.1016/j.spinee.2016.07.313.
  19. Charosky S., Moreno P., Maxy P. Instability and instru-mentation failures after a PSO: a finite element analysis. Eur Spine J. 2014;23(11):2340-2349. doi: 10.1007/s00586-014-3295-x.
  20. Smith J.S., Shaffrey E., Klineberg E., Shaffrey C.I., Lafage V., Schwab F.J. et al. Prospective multicenter assessment of risk factors for rod fracture following surgery for adult spinal deformity. J Neurosurg Spine. 2014;21(6):994-1003. doi: 10.3171/2014.9.SPINE131176.
  21. Smith J.S., Klineberg E., Lafage V., Shaffrey C.I., Schwab F., Lafage R. et al. Prospective multicenter as-sessment of perioperative and minimum 2-year postop-erative complication rates Associated With Adult Spinal Deformity Surgery. J Neurosurg Spine. 2016;25(1):1-14. doi: 10.3171/2015.11.SPINE151036.
  22. Smith J.S., Shaffrey C.I., Ames C.P., Demakakos J., Fu K.M., Keshavarzi S. et al. Assessment of sympto-matic rod fracture after posterior instrumented fusion for adult spinal deformity. Neurosurgery. 2012;71(4): 862-867. doi: 10.1227/NEU.0b013e3182672aab.
  23. Scheer J.K., Tang J.A., Deviren V., Buckley J.M., Pekmezci M., McClellan R.T., Ames C.P. Biomechanical analysis of revision strategies for rod fracture in pedicle subtraction osteotomy. Neurosurgery. 2011;69(1):164-172. doi: 10.1227/NEU.0b013e31820f362a.
  24. Kavadi N., Tallarico R.A., Lavelle W.F. Analysis of instru-mentation failures after three column osteotomies of the spine. Scoliosis Spinal Disord. 2017;12:19. doi: 10.1186/s13013-017-0127-x.
  25. Barton C., Noshchenko A., Patel V., Cain C., Kleck C., Burger E. Risk factors for rod fracture after posterior cor-rection of adult spinal deformity with osteotomy: a ret-rospective case-series. Scoliosis. 2015;10:30. doi: 10.1186/s13013-015-0056-5.
  26. Yang B.P., Ondra S.L., Chen L.A., Jung H.S., Koski T.R., Salehi S.A. Clinical and radiographic outcomes of tho-racic and lumbar pedicle subtraction osteotomy for fixed sagittal imbalance. J Neurosurg Spine. 2006;5(1):9-17. doi: 10.3171/spi.2006.5.1.9.
  27. Hyun S-J., Lenke L.G., Kim Y-C., Koester L.A., Blanke K.M. Comparison of standard 2-rod constructs to multiple-rod constructs for fixation across 3-column spinal oste-otomies. Spine (Phila Pa 1976). 2014;39(22):1899-1904. doi: 10.1097/BRS.0000000000000556.
  28. Palumbo M.A., Shah K.N., Eberson C.P., Hart R.A., Daniels A.H. Outrigger rod technique for supplemen-tal support of posterior spinal arthrodesis. Spine J. 2015;15(6):1409-1414. doi: 10.1016/j.spinee.2015.03.004.
  29. Hallager D.W., Gehrchen M., Dahl B., Harris J.A., Gudipally M., Jenkins S. et al. Use of supplemental short pre-contoured accessory rods and cobalt chrome alloy posterior rods reduces primary rod strain and range of motion across the pedicle subtraction osteotomy level. Spine (Phila Pa 1976). 2016;41(7):E388-E395. doi: 10.1097/BRS.0000000000001282.
  30. Gupta S., Eksi M.S., Ames C.P., Deviren V., Durbin-Johnson B., Smith J.S., Gupta M.C. A novel 4-rod technique offers potential to reduce rod breakage and pseudarthrosis in pedicle subtraction osteotomies for adult spinal deformity correction. Oper Neurosurg (Hagerstown). 2018;14(4):449-456. doi: 10.1093/ons/opx151.
  31. Jager Z.S., İnceoğlu S., Palmer D., Akpolat Y.T., Cheng W.K. Preventing instrumentation failure in three-column spinal osteotomy: biomechanical analysis of rod configuration. Spine Deform. 2016;4(1):3-9. doi: 10.1016/j.jspd.2015.06.005.
  32. Ikenaga M., Shikata J., Takemoto M., Tanaka C. Clinical outcomes and complications after pedicle subtraction osteotomy for correction of thoracolumbar kyphosis. J Neurosurg Spine. 2007;6(4):330-336. doi: 10.3171/spi.2007.6.4.330.
  33. Gupta M.C., Ferrero E., Mundis G., Smith J.S., Shaffrey C.I., Schwab F. et al. Pedicle subtraction osteotomy in the revision versus primary adult spinal deformity pa-tient: is there a difference in correction and complica-tions? Spine (Phila Pa 1976). 2015;40(22):E1169-E1175. doi: 10.1097/BRS.0000000000001107.
  34. Van Royen B.J., Gast A.D. Lumbar osteotomy for correc-tion of thoracolumbar kyphotic deformity in ankylos-ing spondylitis. A structured review of three methods of treatment Lumbar osteotomy for correction of thora-columbar kyphotic deformity in ankylosing spondylitis. Ann Rheum Dis. 1999;58(7):399-406.
  35. Bakaloudis G., Lolli F., Di Silvestre M., Greggi T., Astolfi S., Martikos K. et al. Thoracic pedicle subtraction oste-otomy in the treatment of severe pediatric deformities. Eur Spine J. 2011;20(Suppl. 1):S95-104. doi: 10.1007/s00586-011-1749-y.
  36. Kim Y.J., Bridwell K.H., Lenke L.G., Cheh G., Baldus C. Results of lumbar pedicle subtraction osteotomies for fixed sagit-tal imbalance. Spine (Phila Pa 1976). 2007;32(20):2189-2197. doi: 10.1097/BRS.0b013e31814b8371.
  37. Rose P.S., Bridwell K.H., Lenke L.G., Cronen G.A., Mulconrey D.S., Buchowski J.M., Kim Y.J. Role of pelvic incidence, thoracic kyphosis, and patient factors on sag-ittal plane correction following pedicle subtraction oste-otomy. Spine (Phila Pa 1976). 2009;34(8):785-791. doi: 10.1097/BRS.0b013e31819d0c86.
  38. Lafage V., Ames C., Schwab F., Klineberg E., Akbarnia B., Smith J. et al. Changes in thoracic kyphosis negatively im-pact sagittal alignment after lumbar pedicle subtraction osteotomy. Spine (Phila Pa 1976). 2012;37(3):181-187. doi: 10.1097/BRS.0b013e318225b926.
  39. Eskilsson K., Sharma D., Johansson C., Hedlund R. The impact of spinopelvic morphology on the short-term outcome of pedicle subtraction osteotomy in 104 patients. J Neurosurg Spine. 2017;27(1):74-80. doi: 10.3171/2016.11.SPINE16601.
  40. Yu M., Silvestre C., Mouton T., Rachkidi R., Zeng L., Roussouly P. Analysis of the cervical spine sagittal align-ment in young idiopathic scoliosis: A morphological classification of 120 cases. Eur Spine J. 2013;22(11):2372-2381. doi: 10.1007/s00586-013-2753-1.
  41. Januszewski J., Beckman J.M., Harris J.E., Turner A.W.L., Yen C.P., Uribe J.S. Biomechanical study of rod stress after pedicle subtraction osteotomy versus anterior col-umn reconstruction: A finite element study. Surg Neurol Int. 2017;8:207. DOI: 0.4103/sni.sni_44_17.
  42. Tang J.A., Leasure J.M., Smith J.S., Buckley J.M., Kondrashov D., Ames C.P. Effect of severity of rod con-tour on posterior rod failure in the setting of lumbar pedicle subtraction osteotomy (PSO): a biomechanical study. Neurosurgery. 2013;72(2):276-282. doi: 10.1227/NEU.0b013e31827ba066.
  43. Luca A., Ottardi C., Sasso M., Prosdocimo L., La Barbera L., Brayda-Bruno M. et al. Instrumentation failure fol-lowing pedicle subtraction osteotomy: the role of rod material, diameter, and multi-rod constructs. Eur Spine J. 2017;26(3):764-770. doi: 10.1007/s00586-016-4859-8.
  44. Hamilton D.K., Buza J.A., Passias P., Jalai C., Kim H.J., Ailon T. et al. The fate of patients with adult spinal de-formity incurring rod fracture after thoracolumbar fu-sion. World Neurosurg. 2017;106:905-911. doi: 10.1016/j.wneu.2017.07.061.

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies