OW FREQUENCY ULTRASOUND APPLICATION IN KNEE ARTHROSCOPY

封面


如何引用文章

全文:

详细

Purpose: in vitro study of ultrasound dissection devices' impact on meniscus and knee cartilage as well as comparison of outcomes with familiar arthroscopic techniques.

Materials and methods. Meniscus and joint cartilage specimen obtained during total knee replacement were placed in a normal saline. All experiments were conducted no later than in 2 hours after obtaining and followed by histology of biopsy specimens. In the first series of experiment the authors performed meniscus dissection with ultrasound instrument «Scalpel», cold plasm ablator and surgical scalpel.

Results. The first series of experiments demonstrated disruption of fibers orientation on meniscus rim after dissection with scalpel; necrosis depth after coblation is 0,7-0,8 mm. Ultrasound dissection devices leave necrosis depth of 0,1-0,2 mm and smooth cartilage surface. The second series of experiments proved that after shaver application cartilage surface was coarse; certain necrosis sections of 16-90 nm were observed on relatively smooth cartilage surface after coblation. Application of ultrasound «Miller» device leaves smooth cartilage surface with no fibers, no signs of cartilage thinning and necrosis not exceeding 15 nm.

Conclusion. The results of experiments confirm that use of low frequency ultrasound dissection devices is advantageous as compared to mechanical and ablation cutting techniques while ensuring histologically proven atraumatic handling of biopsy specimens of meniscus and hyaline cartilage.

作者简介

V. Pedder

Metromed (Sci. & Tech. Enterprise), Omsk

Email: fake@neicon.ru
Pedder Valery V. - professor, member, general director of Metromed (Sci. & Tech. Enterprise) 俄罗斯联邦

D. Cherepanov

Clinical and Diagnostic Center «Ultramed», Omsk

编辑信件的主要联系方式.
Email: cherepanov_d@mail.ru

Cherepanov Dmitry E. - trauma and orthopedic surgeon of surgical department.

Ul. Chkalova, 12, Omsk, Russia, 644024; e-mail: cherepanov_d@mail.ru

俄罗斯联邦

参考

  1. Богатов В.Б., Матвеева О.В., Петров А.Б. Влияние холодно-плазменной аблации на хрящ коленного сустава человека и экспериментального животного. Травматология и ортопедия России. 2011;(1):61-66.
  2. Жуликов А.Л., Маланин Д.А., Новочадов В.В. Применение холодноплазменной аблации для восстановления поврежденных суставных поверхностей: модельные испытания. Вестник новых медицинских технологий. 2009;16(3):104-105.
  3. Иванников С.В. Лазерная артроскопическая хирургия. Дегенеративно-дистрофические поражения коленного сустава. М.: Бином. Лаборатория знаний; 2002.160 с.
  4. Котельников Г.П., Ларцев Ю.В. Остеоартроз: руководство. М.: ГЭОТАР-Медиа; 2009. 208 с.
  5. Лощилов В.И., Веденков В.Г., Орлова А.А. Исследование влияния акустических колебаний на процессы ультразвуковой обработки инфицированных ран. В кн.: Труды МВТУ имени Н.Э. Баумана. Т. 242 (Ультразвук и другие виды энергии в хирургии). М.; 1975. с. 32-35.
  6. Николаев Г.А., Лощилов В.И. Ультразвуковая технология в хирургии. М.: Медицина; 1980. 272 с.
  7. Орлецкий А. К., Езеев А. Р. Сравнительная оценка использования высокочастотной аблации при повреждении капсульно-связочного аппарата коленного сустава у спортсменов. Медицинская помощь. 2008;4:22-27.
  8. Педдер В.В. Биомедицинская технология и приборостроение : сб. тр. Омск; 1999. 164 с.
  9. Поляков В.А., Николаев Г.А., Волков М.В. и др. Ультразвуковая сварка костей и резка живых биологических тканей. М.: Медицина; 1973. 136 с.
  10. Цапина Т.Н., Слизкова К.Ш., Эрдес Ш.Ф. Качество жизни у больных остеоартрозом. Научно-практическая ревматология. 2004;(2):20-22.
  11. Allen R.T., Tasto J.P., Cummings J., Robertson C.M., Amiel D. Meniscal Debridement with an Arthroscopic Radiofrequency Wand Versus an Arthroscopic Shaver: Comparative Effects on Menisci and Underlying Articular Cartilage. Arthroscopy. 2006;22:385-393
  12. Baumgaertner M.R. et al. Arthroscopic debridement of the arthritic knee. Clin Orthop Relat Res. 1990;253:197-20
  13. Bonutti P.M. Osteonecrosis of the knee after laser or radiofrequency-assisted arthroscopy. J Bone Joint Surg Ам. 2006;88:69-75.
  14. Caffey S., McPherson E., Moore B. et al. Effects of radiofrequency energy on human articular cartilage: an analysis of 5 systems. Am J Sports Med. 2005; 33(7):1035-1039.
  15. Cooper C., Dennison E., Edwards M., Litwic A. Epidemiology of osteoarthritis. Medicographia. 2013; 35:147-148.
  16. Edwards RB, Lu Y, Uthamanthil RK, Bogdanske JJ et al. Comparison of mechanical debridement and radiofrequency energy for chondroplasty in an in vivo equine model of partial thickness cartilage injury. Osteoarthritis Cartilage. 2007;15(2):169-178.
  17. Ewing J.W. Arthroscopic treatment of degenerative meniscal lesions and early degenerative arthritis of the knee. Articular Cartilage and Knee Joint Function. Basic Science and Arthroscopy. Raven Press, New York; 1990. р. 137-145.
  18. Felson D.T., Nevitt M.C. Epidemiologic studies for osteoarthritis: new versus conventional study design approaches. Rheum Dis Clin N Am. 2004;30:783-797.
  19. Friedman M.J., Berasi C.C., Fox J.M. et al. Preliminary results with abrasion arthroplasty in the osteoarthritic knee. Clin Orthop Relat Res. 1984;182:200-205.
  20. Ganguly K., McRury I.D., Goodwin P.M. et al. Histopomorphic Evaluation of Radiofrequency Mediated Debridement Chondroplasty. The Open Orthop J. 2010;4:211-220.
  21. Huang Y., Zhang Y., Ding X. et al.Working conditions of bipolar radiofrequency on human articular cartilage repair following thermal injury during arthroscopy. Chin Med J (Engl). 2014;127(22):3881-3886.
  22. Jazrawi L.M., Chen A., Stein D., Heywood C.S. et al. The Effects of Radiofrequency Bipolar Thermal Energy on Human Meniscal Tissue. Bull Hosp Jt Dis. 2003;61(3-4):114-117.
  23. Kaab M.J., Bail H.J., Rotter A. et al. Monopolar radiofrequency treatment of partial-thickness cartilage defects in the sheep knee joint leads to extended cartilage injury. Am J Sports Med. 2005;33:1472-1478.
  24. Kim H.K., Moran M.E., Salter R.B. The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion. An experimental investigation in rabbits. J Bone Joint Surg Am. 1991;73(9):1301-1315.
  25. Kirkley A. et al. A randomized trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med. 2008; 359(11):1097-1107.
  26. Lane G.J., Mooar P.A. YAG laser arthroscopic debridment. Lasers Surg Med. 1991;(3):53.
  27. Lu Y., Edwards R.B. 3rd, Cole B.J., Markel M.D. Thermal chondroplasty with radiofrequency energy. An in vitro comparison of bipolar and monopolar radiofrequency devices. AmJ Sports Med. 2001;29(1):42-49.
  28. Milgram J.W. Injury to articular cartilage joint surfaces. I. Chondral injury produced by patellar shaving: a histopathologic study of human tissue specimens. Clin Orthop Relat Res. 1985;(192):168-173.
  29. Miller D.V., O'Brien S.J., Arnoczky et al. The use of the contact Nd:YAG laser in arthroscopic surgery. Athroscopy. 1989;5(4):245-253.
  30. Moseley J.B. et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med. 2002; 347(2):81-89.
  31. Roos H., Adalberth T., Dahlberg L., Lohmander L.S. Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarthritis Cartilage. 1995;3:261-267.
  32. Sherk H.H. Electromagnetic surgical devices in orthopedics. J Bone Joint Surg Ам. 2002;84:675-681.
  33. Shi W., Wari S.G., van der Veen M.J. et al. Effects of varying laser parameters on pulsed Ho:YAG ablation of bovine knee joint tissues. Arthroscopy. 1993;9(1): 96-102.
  34. Uribe J.W. The use of radiofrequency devices for chondral debridement. Sports Med Arthrosc Rev. 2003;11:214-221.
  35. Yuqing Z.H., Jordan J.M. Epidemiology of Osteoarthritis. Clin GeriatrMed. 2010;26(3):355-369.

补充文件

附件文件
动作
1. JATS XML

版权所有 © , 2016



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 82474 от 10.12.2021.


##common.cookie##