Biomechanical Modeling of Options for Internal Fixation of Unilateral Fractures of the Sacrum
- 作者: Kazhanov I.V.1,2, Mikityuk S.I.1,2, Dol’ А.V.3, Ivanov D.V.3, Kharlamov А.V.3, Petrov А.V.1, Kossovich L.Y.3, Manukovskiy V.A.1,2
-
隶属关系:
- Dzhanelidze Saint-Рetersburg Research Institute of Emergency Medicine
- Kirov Military Medical Academy
- Chernyshevsky Saratov National Research State University
- 期: 卷 26, 编号 2 (2020)
- 页面: 79-90
- 栏目: Theoretical and experimental studies
- ##submission.dateSubmitted##: 08.07.2020
- ##submission.dateAccepted##: 08.07.2020
- ##submission.datePublished##: 08.07.2020
- URL: https://journal.rniito.org/jour/article/view/1480
- DOI: https://doi.org/10.21823/2311-2905-2020-26-2-79-90
- ID: 1480
如何引用文章
全文:
详细
Relevance. Currently, the stability of various options for the fixation of sacral fractures by the finite element method has not been sufficiently studied.
Purpose — the biomechanical characteristics of two variants of internal fixation of unilateral sacral fractures by various implants and the localization of the line of its fracture with respect to the articular facet of the L5-S1 vertebrae were studied.
Materials and Methods. Using the finite element method, we studied the biomechanical characteristics of two options for fixing a one-sided longitudinal fracture of the sacrum with different localization of the line of its fracture: outside, inside and directly on the joint facet L5-S1. Two fixation options are considered: cannulated sacroiliac screws and a similar option in combination with a bilateral lumbar-pelvic transpedicular system.
Results. The stresses in implants and bone under compression load and torso forward or backward are almost the same in all models. In the model of fixation with a sacroiliac screw of a one-sided longitudinal sacral fracture, the line of which passes through the articular process S1 of the vertebra (Isler II type), the greatest stress in the screws under compression load and bending moment was 619.7 MPa, which exceeds the yield strength of the titanium alloy and can damage the implants. In all models where the transpedicular system additionally acted as fixing structures, a decrease of 42–77% of maximum displacements was noted, by 28–79% of equivalent stresses in implants under all types of loads, while the equivalent stresses in the bone structures did not differ significantly. In models where the transpedicular system was additionally applied, a decrease of 42–77% of maximum displacements was noted, by 28-79% of stresses in implants under all types of loads, while the stresses in the bones did not differ much.
Conclusion. In all cases of localization of the line of unilateral fracture of the sacrum, the use of a transpedicular system in combination with sacroiliac screws is more stable from the point of view of biomechanics. The most unstable is a one-sided longitudinal fracture of the sacrum passing through the facet L5-S1.
作者简介
I. Kazhanov
Dzhanelidze Saint-Рetersburg Research Institute of Emergency Medicine;Kirov Military Medical Academy
编辑信件的主要联系方式.
Email: carta400@rambler.ru
Igor V. Kazhanov — Cand. Sci (Med.), Leading Researcher, Department of Polytrauma; Department of Military Field Surgery
St. Petersburg
俄罗斯联邦S. Mikityuk
Dzhanelidze Saint-Рetersburg Research Institute of Emergency Medicine;Kirov Military Medical Academy
Email: fake@neicon.ru
Sergey I. Mikityuk — Cand. Sci (Med.), Senior Lecturer; Head of Department of Military Field Surgery
St. Petersburg
俄罗斯联邦А. Dol’
Chernyshevsky Saratov National Research State University
Email: fake@neicon.ru
Alexander V. Dol’ — Cand. Sci (Phys.-Math.), Senior Researcher
Saratov
俄罗斯联邦D. Ivanov
Chernyshevsky Saratov National Research State University
Email: fake@neicon.ru
Dmitry V. Ivanov — Cand. Sci (Phys.-Math.), Leading Researcher
Saratov
俄罗斯联邦А. Kharlamov
Chernyshevsky Saratov National Research State University
Email: fake@neicon.ru
Alexander V. Kharlamov — Cand. Sci (Econ.), Head of Mathematics and Computer Science Department
Saratov
俄罗斯联邦А. Petrov
Dzhanelidze Saint-Рetersburg Research Institute of Emergency Medicine
Email: fake@neicon.ru
Artyom V. Petrov — Orthopediс Surgeon
St. Petersburg
俄罗斯联邦L. Kossovich
Chernyshevsky Saratov National Research State University
Email: fake@neicon.ru
Leonid Yu. Kossovich — Dr. Sci (Phys.-Math.), Professor, Scientific Head of the Laboratory
Saratov
俄罗斯联邦V. Manukovskiy
Dzhanelidze Saint-Рetersburg Research Institute of Emergency Medicine;Kirov Military Medical Academy
Email: fake@neicon.ru
Vadim A. Manukovsky — Dr. Sci (Med.), Professor, Deputy Director; Professor, Military Field Surgery Chair
St. Petersburg
俄罗斯联邦参考
- Dalbayrak S., Yilmaz M., Kaner T., Gokdag M., Yilmaz T., Sasani M. et al. Lumbosacral stabilization using iliac wings: a new surgical technique. Spine (Phila Pa 1976). 2011;36(10):E673-677. doi: 10.1097/BRS.0b013e3181f8fa7c.
- Nonne D., Capone A., Sanna F., Busnelli L., Russo A.L., Marongiu G. et al. Suicidal jumper’s fracture – sacral fractures and spinopelvic instability: a case series. J Med Case Rep. 2018;12(1):186. doi: 10.1186/s13256-018-1668-1.
- Padalkar P., Pereira B.P., Kathare A., Sun K.K., Kagda F., Joseph T. Trans-iliosacral plating for vertically unstable fractures of sacral spine associated with spinopelvic dissociation: A cadaveric study. Indian J Orthop. 2012;46(3):274-278. doi: 10.4103/0019-5413.96376.
- Yu B.S., Zhuang X.M., Zheng Z.M. et al. Biomechanical advantages of dual over single iliac screws in lumbo-iliac fixation construct. Eur Spine J. 2010;19(7):1121-1128. doi: 10.1007/s00586-010-1343-8.
- Bodzay T., Szita J., Manó S., Kiss L., Jónás Z., Frenyó S., Csernátony Z. Biomechanical comparison of two stabilization techniques for unstable sacral fractures. J Orthop Sci. 2012;17(5):574-579. doi: 10.1007/s00776-012-0246-4.
- Giráldez-Sánchez M.A., Lázaro-Gonzálvez Á., Martínez-Reina J., Serrano-Toledano D., Navarro- Robles A., Cano-Luis P. et al. Percutaneous iliosacral fixation in external rotational pelvic fractures. A biomechanical analysis. Injury. 2015;46(2):327-332. doi: 10.1016/j.injury.2014.10.058.
- Nouh M.R. Spinal fusion-hardware construct: Basic concepts and imaging review. World J Radiol. 2012;4(5):193-207. doi: 10.4329/wjr.v4.i5.193.
- Pearson J.M., Niemeier T.E., McGwin G. Rajaram Manoharan S. Spinopelvic dissociation: comparison of outcomes of percutaneous versus open fixation strategies. Adv Orthop. 2018;2018:5023908. doi: 10.1155/2018/5023908.
- Shah D.S., Bates T., Fowler J. et al. Minimally invasive lumbopelvic fixation for unstable U-type sacral fractures. Cureus. 2019;11(9):e5621. doi: 10.7759/cureus.5621.
- Дубров В.Э., Зюзин Д.А., Кузькин И.А., Щербаков И.М., Донченко С.В., Сапрыкина К.А. Применение метода конечных элементов при моделировании биологических систем в травматологии и ортопедии. Российский журнал биомеханики. 2019;23(1):140-152.
- Тяжелов А.А., Яресько А.В., Гончарова Л.Д., Лобанов Г.В., Боровой И.С. Моделирование напряженно- деформированного состояния таза как замкнутой биокинематической цепи. Вісник ортопедії, травматології та протезування. 2014;(3):50-54.
- Li J., Peng Y., Yuchi C. Du C. [Finite element analysis of fixation of U-shaped sacral fractures]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019;36(2):223-231. doi: 10.7507/1001-5515.201808026. (In Chinese).
- Salari P., Moed B.R., Bledsoe J.G. Supplemental S1 fixation for type C pelvic ring injuries: biomechanical study of a long iliosacral versus a transsacral screw. J Orthop Traumatol. 2015;16(4):293-300. doi: 10.1007/s10195-015-0357-8.
- Schildhauer T.A., Ledoux W.R., Chapman J.R. Henley M.B., Tencer A.F., Routt M.L. Jr. Triangular osteosynthesis and iliosacral screw fixation for unstable sacral fractures: a cadaveric and biomechanical evaluation under cyclic loads. J Orthop Trauma. 2003;17(1):22-31. doi: 10.1097/00005131-200301000-00004.
- Tabaie S.A., Bledsoe J.G., Moed B.R. Biomechanical comparison of standard iliosacral screw fixation to transsacral locked screw fixation in a type C–zone II pelvic fracture model. J Orthop Trauma. 2013;27(9): 521-526. doi: 10.1097/BOT.0b013e3182781102.
- Van Zwienen C.M., Van den Bosch E.W., Hoek van Dijke G.A. Snijders C.J., van Vugt A.B. Cyclic loading of sacroiliac screws in Tile C pelvic fractures. J Trauma. 2005;58(5): 1029-1034. doi: 10.1097/01.ta.0000158515.58494.11.
- Vigdorchik J.M., Jin X., Sethi A. Herzog D.T., Oliphant B.W., Yang K.H., Vaidya R.A. A biomechanical study of standard posterior pelvic ring fixation versus a posterior pedicle screw construct. Injury. 2015;46(8):1491-1496. doi: 10.1016/j.injury.2015.04.038.
- Isler B. Lumbosacral lesions associated with pelvic ring injuries. J Orthop Trauma. 1990;4(1):1-6. doi: 10.1097/00005131-199003000-00001.
- Griffin D.R., Starr A.J., Reinert C.M. et al. Vertically unstable pelvic fractures fixed with percutaneous iliosacral screws: does posterior injury pattern predict fixation failure? J Orthop Trauma. 2003;17(6):399-405. doi: 10.1097/00005131-200307000-00001.
- Доль А.В., Доль Е.С., Иванов Д.В. Биомеханическое моделирование вариантов хирургического реконструктивного лечения спондилолистеза позвоночника на уровне L4–L5. Российский журнал биомеханики. 2018;22(1):31-44.
- Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater. 2008;1(1):30-42. doi: 10.1016/j.jmbbm.2007.07.001.
- Brown T., Ferguson J. Mechanical property distributions in the cancellous bone of the human proximal femur. Acta Orthop Scand. 1980;13:687-699. doi: 10.3109/17453678008990819.
- Zhao Y., Li J., Wang D., Liu Y.H., Sun T., Jiang CQ et al. Comparison of stability of sacroiliac screws in the treatment of bilateral sacral fractures in a finite element model. Zhonghua Wai Ke Za Zhi. 2012;50(8):719-723.
- Борозда И.В. Систематизация знаний по биомеханике тазового кольца. Дальневосточный медицинский журнал. 2009;(2):129-132.
- Истомин А.Г. Экспериментально-биомеханическое исследование связок крестцово-подвздошного сустава. Ортопедия, травматология и протезирование. 1997;(3):62-63.
- Бушманов А.В., Серов М.А. Анализ взаимодействия тяги мышц и гравитационных сил в области тазового кольца. Вестник Амурского государственного университета. 2004;(25):31-33.
- Garcıa J., Doblare M., Seral B. Seral F., Palanca D., Gracia L. Three-dimensional finite element analysis of several internal and external pelvis fixations. J Biomech Eng. 2000;122(5):516-522. doi: 10.1115/1.1289995.
- Song W., Zhou D., He Y. The biomechanical advantages of bilateral lumbo-iliac fixation in unilateral comminuted sacral fractures without sacroiliac screw safe channel: a finite element analysis. Medicine (Baltimore). 2016;95(40):e5026. doi: 10.1097/MD.0000000000005026.
- Bruna-Rosso C., Arnoux P.J., Bianco R.J., Godio-Raboutet Y., Fradet L., Aubin C.É. Finite Element Analysis of Sacroiliac Joint Fixation under Compression Loads. Int J Spine Surg. 2016;10:16. doi: 10.14444/3016.
- Shin J.K., Lim B.Y., Goh T.S. Son S.M., Kim H.S., Lee J.S., Lee C.S. Effect of the screw type (S2-alariliac and iliac), screw length, and screw head angle on the risk of screw and adjacent bone failures after a spinopelvic fixation technique: A finite element analysis. PLoS One. 2018;13(8):e0201801. doi: 10.1371/journal.pone.0201801.
- Донченко С.В., Дубров В.Э., Голубятников А.В., Черняев А.В., Кузькин И.А., Алексеев Д.В., Лебедев А.Ф. Способы окончательной фиксации тазового кольца, основанные на расчетах конечно-элементной модели. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2014;(1):38-44.