Hip Arthroplasty in Patients with Hip Dysplasia by Individual Augments: Early Results

Cover Page


Cite item

Abstract

Relevance. The altered hip anatomy makes total hip arthroplasty in patients with hip dysplasia a difficult and non-standard task. The acetabulum is deformed with femoral head in subluxation or dislocation. The most important task of surgery is to restore the anatomical position of the hip center of rotation.

The study purpose — to evaluate the early results of hip arthroplasty with individual augments in the patients with hip dysplasia.

Materials and Methods. Since 2017, nine patients with hip dysplasia have undergone surgery using individually printed augments. All patients were women with average age 51.3±14.5 years (23 to 67). The mean follow-up was 14.3±5.2 months (8 to 20). Patients were evaluated using follow-up X-rays, a visual analogue scale (VAS), Harris Hip Score (HHS), and Western Ontario and McMaster Universities Arthritis Index (WOMAC).

Results. There was no a single case of endoprosthesis dislocation, loosening of components, prosthetic infection or revision surgery in the analyzed group of patients. The planned sizes of the acetabular components were equal to the placed in 7 cases (77.8%). In two cases (22.2%), the acetabular components were 2 mm larger because the surgeon wanted a greater degree of press-fit fixation. The restoration of the anatomical position of the acetabular component was noted. Before the surgery, the femoral head was on average 22.7±11.7 mm (10 to 43 mm) higher. After the surgery, the level of the acetabular component was on average only 0.75±2.1 mm (1.7 to 5 mm), p = 0.008. Also, there were a decrease in pain and quality of life improvement by VAS from 6.78±1.39 before surgery to 2.22±1.09 at follow-up (p = 0.007), HHS increase from 30.5±18. 1 to 77.59±14.26 (p = 0.008), and WOMAC decrease from 73.3±14.1 to 18.22±8.2 (p = 0.008).

Conclusion. The individually printed augments have shown high efficacy for restoration of the anatomical center of rotation and good early results in the patients with hip dysplasia undergone hip arthroplasty.

About the authors

Ya. A. Rukin

Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: yar.rukin@gmail.com

Yaroslav A. Rukin — Cand. Sci. (Med.), Assistant Professor of Department of Trauma, Orthopaedics and Disaster Surgery

Moscow

Russian Federation

A. V. Lychagin

Sechenov First Moscow State Medical University (Sechenov University)

Email: fake@neicon.ru

Alexey V. Lychagin — Dr. Sci. (Med.), Assistant Professor, Head of Department of Trauma, Orthopaedics and Disaster Surgery

Moscow

Russian Federation

V. Yu. Murylev

Sechenov First Moscow State Medical University (Sechenov University);
Botkin City Clinical Hospital

Email: fake@neicon.ru

Valeriy Yu. Murylev — Dr. Sci. (Med.), Professor of Department of Trauma, Orthopaedics and Disaster Surgery; Head of Moscow City Bone and Joint Replacement Centre

Moscow

Russian Federation

A. V. Garkavi

Sechenov First Moscow State Medical University (Sechenov University)

Email: fake@neicon.ru

Andrey V. Garkavi — Dr. Sci. (Med.), Professor of Department of Trauma, Orthopaedics and Disaster Surgery

Moscow

Russian Federation

D. A. Tarasov

Sechenov First Moscow State Medical University (Sechenov University)

Email: fake@neicon.ru

Dmitriy A. Tarasov — Doctor, Department of Anesthesiology and Resuscitation

Moscow

Russian Federation

M. P. Elizarov

Sechenov First Moscow State Medical University (Sechenov University)

Email: fake@neicon.ru

Mikhail P. Elizarov — PhD Student of Department of Trauma, Orthopaedics and Disaster Surgery

Moscow

Russian Federation

References

  1. Paterson D. The early diagnosis and treatment of congenital dislocation of the hip. Aust N Z J Surg.2008;46(4): 359-366. doi: 10.1111/j.1445-2197.1976.tb03249.x.
  2. Tredwell S.J. Neonatal screening for hip joint instability. Clin Orthop Relat Res. 1992;(281):63-68. doi: 10.1097/00003086-199208000-00011.
  3. Камоско М.М., Басков В.Е., Барсуков Д.Б., Поздникин И.Ю., Григорьев И.В. Транспозиция вертлужной впадины путем тройной остеотомии таза при лечении детей с дисплазией тазобедренного сустава. Травматология и ортопедия России. 2014;73(3):76-85. doi: 10.21823/2311-2905-2014-0-3-76-85.
  4. Argenson J.N., Ryembault E., Flecher X., Brassart N., Parratte S., Aubaniac J.M. Three-dimensional anatomy of the hip in osteoarthritis after developmental dysplasia. J Bone Joint Surg Br. 2005;87(9):1192-1196.
  5. Bobyn J.D., Stackpool G.J., Hacking S.A., Tanzer M., Krygier J.J. Characteristics of bone ingrowth and interfacemechanics of a new porous tantalum biomaterial. J Bone Joint Surg Br. 1999;81(5):907-914.
  6. Charnley J., Feagin J. Low-friction arthroplasty in congenital subluxation of the hip. Clin Orthop Relat Res. 1973;(91):98-113.
  7. Crowe J.F., Mani V., Ranawat C.S. Total hip replacement in congenital dislocation and dysplasia of the hip. J Bone Joint Surg Am. 1979;61(1):15-23.
  8. Dunn H.K., Hess W. Total hip reconstruction in chronically dislocated hips. J Bone Joint Surg Am. 1976;58(6): 838-845. doi: 10.2106/00004623-197658060-00015.
  9. Mendes D.G. Total hip arthroplasty in congenital dislocated hips. Clin Orthop Relat Res.1981;161:163-179. doi: 10.1097/00003086-198111000-00019.
  10. Woolson S.T., Harris W.H. Complete total hip replacement for dysplastic or hypoplastic hips using miniature or microminiature components. J Bone Joint Surg Am. 1983;65(8):1099-1108. doi: 10.2106/00004623-198365080-00009.
  11. Pagnano W., Hanssen A.D., Lewallen D.G., Shaughnessy W.J. The effect of superior placement of the acetabular component on the rate of loosening after total hip arthroplasty. J Bone Joint Surg Am. 1996;78(7): 1004-1014. doi: 10.2106/00004623-199607000-00004.
  12. Watts C.D., Abdel M.P., Hanssen A.D., Pagnano M.W. Anatomic hip center decreases aseptic loosening rates after total hip arthroplasty with cement in patients with crowe type-ii dysplasia: a concise follow-up report at a mean of thirty-six years. J Bone Joint Surg Am. 2016;98(11):910-915. doi: 10.2106/JBJS.15.00902.
  13. Linde F., Jensen J., Pilgaard S. Charnley arthroplasty in osteoarthritis secondaryto congenital dislocation or subluxation of the hip. Clin Orthop Relat Res. 1988;227: 164-171. doi: 10.1097/00003086-198802000-00020.
  14. Tsukada S., Wakui M. Bulk femoral head autograft without decortication inuncemented total hip arthroplasty: seven- to ten-year results. J Arthroplasty. 2012;27(3):437-444. doi: 10.1016/j.arth.2011.06.003.
  15. Song J.H., Ahn T.S., Yoon P.W., Chang J.S. Reliability of the acetabular reconstruction technique using autogenous bone graft from resected femoral head in hip dysplasia: Influence of the change of hip joint center on clinical outcome. J Orthop. 2017;14(4):438-444. doi: 10.1016/j.jor.2017.07.007.
  16. Kim M., Kadowaki T. High long-term survival of bulk femoral head autograft for acetabular reconstruction in cementless THA for developmental hip dysplasia. Clin Orthop Relat Res. 2010;468(6):1611-1620. doi: 10.1007/s11999-010-1288-6.
  17. De Jong P.T., Haverkamp D., van der Vis H.M., Marti R.K. Total hip replacement with a superolateral bone graft for osteoarthritis secondary to dysplasia: a long-term follow-up. J Bone Joint Surg Br. 2006;88(2):173-178.
  18. Anwar M.M., Sugano N., Masuhara K., Kadowaki T., Takaoka K., Ono K. Total hip arthroplasty in the neglected congenital dislocation of the hip. A fiveto 14- year follow-up study. Clin Orthop Relat Res. 1993;(295):127-134.
  19. Cameron H.U., Botsford D.J., Park Y.S. Influence of the Crowe rating on the outcome of total hip arthroplasty in congenital hip dysplasia. J Arthroplasty. 1996;11(5):582-587.
  20. Delimar D., Aljinovic A., Bicanic G. Failure of bulk bone grafts after total hip arthroplasty for hip dysplasia. Arch Orthop Trauma Surg. 2014;134(8):1167-1173. doi: 10.1007/s00402-014-2006-8.
  21. Ling T.X., Li J.L., Zhou K., Xiao Q., Pei F.X., Zhou Z.K. The use of porous tantalum augments for the reconstruction of acetabular defect in primary total hip arthroplasty. J Arthroplasty. 2018;33(2):453-459. doi: 10.1016/j.arth.2017.09.030.
  22. Kamada T., Mashima N., Nakashima Y., Imai H., Takeba J., Miura H. Mid-term clinical and radiographic outcomes of porous tantalum modular acetabular components for hip dysplasia. J Arthroplasty. 2015;30(4):607-610. doi: 10.1016/j.arth.2014.11.007.
  23. Meneghini M.R., Meyer C., Buckley C.A., Hanssen A.D., Lewallen D.G. Mechanical stability of novel highly porous metal acetabular components in revision total hip arthroplasty. J Arthroplasty. 2010;25(3):337341. doi: 10.1016/j.arth.2009.03.003.
  24. Macheras G.A., Lepetsos P., Leonidou A.O., Anastasopoulos P.P., Galanakos S.P., Poultsides L.A. Survivorship of a porous tantalum monoblock acetabular component in primary hip arthroplasty with a mean follow-up of 18 years. J Arthroplasty. 2017;32(12):3680-3684. doi: 10.1016/j.arth.2017.06.049.
  25. Lachiewicz P.F., O’Dell J.A. Tantalum Components in Difficult Acetabular Revisions Have Good Survival at 5 to 10 Years. Clin Orthop Relat Res. 2018;476(2):336-342. doi: 10.1007/s11999.0000000000000005.
  26. Evola F.R., Costarella L., Evola G., Barchitta M., Agodi A., Sessa G. Acetabular revisions using porous tantalum components: A retrospective study with 5-10 years follow-up. World J Orthop. 2017;8(7):553-560. doi: 10.5312/wjo.v8.i7.553.
  27. Wei R., Guo W., Yang R., Tang X., Yang Y., Ji T. et al. Reconstruction of the pelvic ring after total en bloc sacrectomy using a 3D-printed sacral endoprosthesis with re-establishment of spinopelvic stability: a retrospective comparative study. Bone Joint J. 2019;101-B(7):880-888. doi: 10.1302/0301-620X.101B7.BJJ-2018-1010.R2.
  28. Patel V., Kovalsky D., Meyer S. C., Chowdhary A., Lockstadt H., Techy F. et al. Minimally invasive lateral transiliac sacroiliac joint fusion using 3D-printed triangular titanium implants. Med Devices (Auckl). 2019;12:203-214. doi: 10.2147/MDER.S205812.
  29. Michielsen M., Van Haver A., Vanhees M., van Riet R., Verstreken F. Use of three-dimensional technology for complications of upper limb fracture treatment. EFORT Open Rev. 2019;4(6):302-312. doi: 10.1302/2058-5241.4.180074.
  30. Черный А.А., Коваленко А.Н., Билык С.С., Денисов А.О., Каземирский А.В., Куляба Т.А. и др. Ранние результаты применения индивидуально изготовленныхмодульных конусов для замещения метафизарно-диафизарныхкостных дефектов при ревизионной артропластикеколенного сустава. Травматология и ортопедия России. 2019;25(2):9-18. doi: 10.21823/2311-2905-2019-25-2-9-18.
  31. Zhang Y.C., Li J.J., Hou W.T., Zhang H.F., Liu J.H. A preliminary study of three-dimensional printed porous titanium plate integrated implant for the repair of comminuted acetabular posterior wall fracture with bone defect. Zhongguo Gu Shang. 2019;32(5):469-474. doi: 10.3969/j.issn.1003-0034.2019.05.016.
  32. Fang C., Cai H., Kuong E., Chui E., Siu Y.C., Ji T.et al. Surgical applications of three-dimensional printing in the pelvis and acetabulum: from models and tools to implants. Unfallchirurg. 2019;122(4):278-285. doi: 10.1007/s00113-019-0626-8.
  33. Kieser D.C., Ailabouni R., Kieser S.C.J., Wyatt M.C., Armour P.C., Coates M.H. et al. The use of an Ossis custom 3D-printed tri-flanged acetabular implant for major bone loss: minimum 2-year follow-up. Hip Int. 2018;28(6):668-674. doi: 10.1177/1120700018760817.
  34. Wang B., Hao Y., Pu F., Jiang W., Shao Z. Computeraided designed, three dimensional-printed hemipelvic prosthesis for peri-acetabular malignant bone tumour. Int Orthop. 2018;42(3):687-694. doi: 10.1007/s00264-017-3645-5.
  35. Wyatt M.C. Custom 3D-printed acetabular implants in hip surgery-innovative breakthrough or expensive bespoke upgrade? Hip Int. 2015;25(4):375-379. doi: 10.5301/hipint.5000294.
  36. Kavalerskiy G.M., Murylev V.Y., Rukin Y.A., Elizarov P.M., Lychagin A.V., Tselisheva E.Y. Three-Dimensional Models in Planning of Revision Hip Arthroplasty with Complex Acetabular Defects. Indian J Orthop. 2018;52(6):625-630. doi: 10.4103/ortho.IJOrtho_556_16.
  37. Perets I., Walsh J.P., Close M.R., Mu B.H., Yuen L.C., Domb B.G. Robot-assisted total hip arthroplasty: Clinical outcomes and complication rate. Int J Med Robot. 2018;14(4):e1912. doi: 10.1002/rcs.1912.
  38. Mah D., Pelletier M.H., Lovric V., Walsh W.R. Corrosion of 3D-printed orthopaedic implant materials. Ann Biomed Eng. 2019;47(1):162-173. doi: 10.1007/s10439-018-02111-1.
  39. Karolewska K., Ligaj B. Comparison analysis of titanium alloy Ti6Al4V produced by metallurgical and 3D printing method. AIP Conference Proceedings 2077, 020025 (2019). doi.org/10.1063/1.5091886. Available from: https://aip.scitation.org/doi/pdf/10.1063/1.5091886?download=true
  40. Shunmugavel M., Polishetty A., Littlefair G. Microstructure and mechanical properties of wrought and additive manufactured Ti-6Al-4V cylindrical bars. Procedia Technology. 2015;20:231-236. doi: 10.1016/j.protcy.2015.07.037.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 82474 от 10.12.2021.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies