Coatings Based on Two-Dimensionally Ordered Linear Chain Carbon for Protection of Titanium Implants from Microbial Colonization

Cover Page


Cite item

Abstract

Purpose of the study – to evaluate the antibacterial activity and biological compatibility of alloy coatings based on two-dimensionally ordered linear chain carbon (TDOLCC).

Materials and Methods. Coatings based on TDOLCC were synthesized using alloying additions like nitrogen (TDOLCC+N) and silver (TDOLCC+Ag) on the surfaces of titanium plates and polystyrene plates by the ion-stimulated carbon condensation in a vacuum. The authors examined the superficial bactericidal activity of the coatings and its resistance to mechanical effects. Coated plates were evaluated in respect of rate of microbial biofilms formation by clinical isolates with multiple and extreme antibiotic resistance. Specimens were colored with crystal violet solution to visualize the biofilms. Cytotoxic effect of coatings was evaluated in respect of primary culture of fibroblasts and keratinocyte cell line HaCaT.

Results. The authors observed pronounced superficial bactericidal effect of TDOLCC+Ag coating in respect of microorganisms of several taxonomic groups independently of their resistance to antibacterial drugs. TDOLCC+Ag coating proved capable to completely prevent microbial biofilm formation by antibiotic resistant clinical isolates of S. aureus and P. aeruginosa. Silvercontaining coating demonstrated mechanical resistance and preservation of close to baseline level of superficial bactericidal activity even after lengthy abrasion treatment. TDOLCC based coatings did not cause any cytotoxic effects. Structure of monolayers formed in cavities coated by TDOLCC+N and TDOLCC+Ag was indistinguishable from the monolayers in cavities of control plates.

About the authors

D. V. Tapalski

Gomel State Medical University

Author for correspondence.
Email: tapalskiy@gsmu.by

Dmitry V. Tapalski — cand. Sci. (Med.), associate professor, head of the Department of Microbiology, Virology and Immunology

Gomel

Belarus

N. S. Nikolaev

Federal Center of Traumatology, Orthopedics and Endoprosthetics, Cheboksary

Email: fake@neicon.ru

Nikolai  S.  Nikolaev —  Dr.  Sci.  (Med.),  head  physician

Cheboksary

Russian Federation

A. V. Ovsyankin

Federal Center of Traumatology, Orthopedics and Endoprosthetics, Smolensk

Email: fake@neicon.ru

Anatoly V. Ovsyankin — cand. Sci. (Med.), head physician

Smolensk

Russian Federation

V. D. Kochakov

Ulyanov Chuvash State University

Email: fake@neicon.ru

Valery D. Kochakov — cand. Sci. (eng.), professor at the Department of Applied Physics and Nanotechnologies

Cheboksary

Russian Federation

E. A. Golovina

Federal Center of Traumatology, Orthopedics and Endoprosthetics, Smolensk

Email: fake@neicon.ru

Elena A. Golovina — clinical bacteriologist

Smolensk

Russian Federation

M. V. Matveenkov

Institute of Radiobiology of the National Academy of Sciences of Belarus

Email: fake@neicon.ru

Matvei V. Matveenkov — researcher, Combined Effects Laboratory

Gomel

Belarus

M. V. Sukhorukova

Research Institute of Antimicrobial Chemotherapy of Smolensk State Medical University

Email: fake@neicon.ru

Marina V. Sukhorukova — cand. Med. Sci., senior researcher, head of the Department of Multicenter Study 

Smolensk

Russian Federation

R. S. Kozlov

Research Institute of Antimicrobial Chemotherapy of Smolensk State Medical University

Email: fake@neicon.ru

Roman S. Kozlov — Dr. Sci. (Med.), professor, corresponding member of the Russian Academy of Sciences; director of Research Institute of Antimicrobial Chemotherapy of Smolensk State Medical University

Smolensk

Russian Federation

References

  1. Koseki H., Yonekura A., Shida T., Yoda I., Horiuchi H., Morinaga Y. et al. Early staphylococcal biofilm formation on solid orthopaedic implant materials: in vitro study. PLoS One. 2014;9(10):e107588. doi: 10.1371/journal.pone.0107588.
  2. Zimmerli W., Moser C. Pathogenesis and treatment concepts of orthopaedic biofilm infections. FEMS Immunol Med Microbiol. 2012;65(2):158-168. doi: 10.1111/j.1574-695X.2012.00938.x.
  3. Bruellhoff K., Fiedler J., Möller M., Groll J., Brenner R.E. Surface coating strategies to prevent biofilm formation on implant surfaces. Int J Artif Organs.2010;33(9):646-653. doi: 10.1177/039139881003300910.
  4. Казбанов В.В., Баталов М.С., Вишневский А.А. Особенности биосовместимости и перспективы применения титановых имплантатов с алмазоподобными покрытиями на основе модифицированного углерода. Проблемы здоровья и экологии. 2015;(2):16-23.
  5. Oliveira L.Y., Kuromoto N.K., Siqueira C.J. Treating orthopedic prosthesis with diamond-like carbon: minimizing debris in Ti6Al4V. J Mater Sci Mater Med.2014;25(10):2347-2355. doi: 10.1007/s10856-014-5252-y.
  6. Бабаев В.Г., Новиков Н.Д., Гусева М.Б., Хвостов В.В., Савченко Н.Ф., Коробова Ю.Г., Александров А.Ф. Пленки линейно-цепочечного углерода— упорядоченные ансамбли квантовых нитей — материал для наноэлектроники. Нанотехнологии: разработка, применение — XXI век. 2010;2(1):53-68.
  7. Беляев Л.В., Ваганов В.Е., Кочаков В.Д. Гоголинский К.В., Кравчук К.С. Исследование структуры и свойств покрытий на основе линейно-цепочечного углерода для полимеров медицинского назначения. Перспективные материалы. 2013;3:41-46.
  8. Williams D.F., Roaf R. Implants in surgery. London : W.B. Saunders Company; 1973. 598 p. doi: 10.1002/bjs.1800611217.
  9. Александров А.Ф., Гусева М.Б., Корнеева Ю.В., Новикова Н.Д., Хвостов В.В. Результаты и перспективы применения биосовместимых форм линейно-цепочечного углерода в медицине. Интеграл. 2011;61(5):27-31.
  10. Kudryavtsev Yu.P., Evsyukov S.E., Guseva M.B., Babaev V.G. Oriented carbyne layers. Carbon. 1992;30(2):213-221. doi: 10.1016/0008-6223(92)90082-8.
  11. Новиков Н.Д., Бабаев В.Г., Гусева М.Б., Трубин В.В., Маллин Д.А., Лещинский А.М. Sp1-углерод и медицина. История успеха и потенциальные возможности. Нанотехника. 2007;10(2):57-63.
  12. Qia C, Rogachev A.V., Tapal’skii D.V., Yarmolenko M.A., Rogachev A.A., Jianga X., Koshanskay E.V., Vorontsov A.S. Nanocomposite coatings for implants protection from microbial colonization: formation features, structure, and properties. Surf Coat Tech. 2017;315:350-358. doi: 10.1016/j.surfcoat.2017.02.066.
  13. Abalkhil T.A., Alharbi S.A., Salmen S.H., Wainwright M. Bactericidal activity of biosynthesized silver nanoparticles against human pathogenic bacteria. Biotechnol Biotechnol Equip. 2017;31(2):411-417. doi: 10.1080/13102818.2016.1267594.
  14. dos Santos C.A., Jozala A.F., Pessoa A.J., Seckler M.M. Antimicrobial effectiveness of silver nanoparticles co-stabilized by the bioactive copolymer pluronic F68. J Nanobiotechnology. 2012;10:43. doi: 10.1186/1477-3155-10-43.
  15. Romano C.L., Scarponi S., Gallazzi E., Romano D., Drago L. Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J Orthop Surg Res. 2015;10:157. doi: 10.1186/s13018-015-0294-5.
  16. Legeay G., Poncin-Epaillard F., Arciola C.R. New surfaces with hydrophilic/hydrophobic characteristics in relation to (no)bioadhesion. Int J Artif Organs. 2006;29(4):453-461. doi: 10.1177/039139880602900416.
  17. Verran J., Whitehead K. Factors affecting microbial adhesion to stainless steel and other materials used in medical devices. Int J Artif Organs. 2005;28(11):1138-1145. doi: 10.1177/039139880502801111.
  18. Zhao L., Chu PK, Zhang Y, Wu Z. Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater. 2009;91(1):470-480. doi: 10.1002/jbm.b.31463.
  19. Bumgardner J.D., Adatrow P., Haggard W.O., Norowski P.A. Emerging antibacterial biomaterial strategies for the prevention of peri-implant inflammatory diseases. Int J Oral Maxillofac Implants. 2011;26(3):553-560.
  20. Gimeno M., Pinczowski P., Perez M., Giorello A., Martinez M.A., Santamaria J., Arruebo M., Lujan L. A controlled antibiotic release system to prevent orthopedic-implant associated infections: An in vitro study. Eur J Pharm Biopharm. 2015;96:264-271. doi: 10.1016/j.ejpb.2015.08.007.
  21. Zilberman M., Elsner J.J. Antibiotic-eluting medical devices for various applications. J Control Release. 2008;130(3):202-215. doi: 10.1016/j.jconrel.2008.05.020.
  22. Ewald A., Gluckermann S.K., Thull R., Gbureck U. Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng Online. 2006;5;22. doi: 10.1186/1475-925X-5-22.
  23. Liu X., Chu P.K., Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng. 2004;47(3-4):49-121. doi: 10.1016/j.mser.2004.11.001.
  24. Shirai T., Shimizu T., Ohtani K., Zen Y., Takaya M., Tsuchiya H. Antibacterial iodine-supported titanium implants. Acta Biomater. 2011;7(4):1928-1933. doi: 10.1016/j.actbio.2010.11.036.
  25. Tsuchiya H., Shirai T., Nishida H., Murakami H., Kabata T., Yamamoto N., Watanabe K., Nakase J. Innovative antimicrobial coating of titanium implants with iodine. J Orthop Sci. 2012;17(5):595-604. doi: 10.1007/s00776-012-0247-3.
  26. Fuchs T., Schmidmaier G., Raschke M.J., Stange R. Bioactivecoated implants in trauma surgery. Eur J Trauma Emerg S. 2008;34(1):60-68. doi: 10.1007/s00068-006-6110-5.
  27. Fuchs T., Stange R., Schmidmaier G., Raschke M.J. The use of gentamicin-coated nails in the tibia: preliminary results of a prospective study. Arch Orthop Trauma Surg. 2011;131(10):1419-1425. doi: 10.1007/s00402-011-1321-6.
  28. Juan L., Zhimin Z., Anchun M., Lei L., Jingchao Z. Deposition of silver nanoparticles on titanium surface for antibacterial effect. Int J Nanomedicine. 2010;5(5):261-267. doi: 10.2147/IJN.S8810.
  29. Melaiye A.Y.W. Silver and its application as an antimicrobial agent. Expert Opin Ther Pat. 2005;15(2):125-130. doi: 10.1517/13543776.15.2.125.
  30. Bosetti M., Masse A., Tobin E., Cannas M. Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials. 2002;23(3):887-892. DOI: 10.1016/ S0142-9612(01)00198-3.
  31. Balamurugan A., Balossier G., Laurent-Maquin D., Pina S., Rebelo A.H., Faure J., Ferreira J.M. An in vitro biological and anti-bacterial study on a sol-gel derived silver-incorporated bioglass system. Dent Mater. 2008;24(10):1343-1351. doi: 10.1016/j.dental.2008.02.015.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 82474 от 10.12.2021.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies