Preview

Травматология и ортопедия России

Расширенный поиск

ЗАВИСИМОСТЬ ОСТЕОГЕННОГО ЭФФЕКТА ОТ ХАРАКТЕРИСТИК МЕХАНИЧЕСКИХ НАГРУЗОК КОСТНЫХ СТРУКТУР

https://doi.org/10.21823/2311-2905-2016-0-2-88-100

Полный текст:

Аннотация

Цель: на основании собственных данных и анализа литературы оценить степень остеогенности различных характеристик механических нагрузок. Анализ литературы по теме исследования показывает, что клинического результата физических тренировок можно достичь не только путем увеличения механических нагрузок, но и при изменении количества их повторений, скорости нарастания нагрузки, частоты циклических нагрузок, длительности интервала отдыха между ними, распределения нагрузок в пространстве скелета. Представленные в работе данные позволяют обоснованно использовать изменение каждой из перечисленных характеристик для получения клинического эффекта и формировать на индивидуальной основе минимально необходимый режим тренировок, обеспечивающий максимальный лечебно-профилактический эффект у лиц с высоким риском остеопоротических переломов.

Об авторах

А. С. Аврунин
ФГБУ «Российский научно-исследовательский институт травматологии и ортопедии им. Р.Р. Вредена» Минздрава России, ул. Ак. Байкова, д. 8, Санкт-Петербург, Россия, 195427
Россия

д-р мед. наук старший научный сотрудник ФГБУ «Российский научно-исследовательский институт травматологии и ортопедии им. Р.Р. Вредена» Минздрава России



А. А. Докторов
ФГБНУ «Всероссийский институт лекарственных и ароматических растений» ФАНО России, ул. Грина, д. 7, стр. 1, Москва, россия, 117216
Россия

д-р мед. наук профессор заведующий отделом морфологии ФГБНУ «Всероссийский институт лекарственных и ароматических растений» ФАНО России



Список литературы

1. Avrunin AS, Tikhilov RM, Shoubniakov II. [Medical and paramedical causes of formation of high public attention to the problem of bone mass loss. The analysis of dynamics and structure of publications on osteoporosis]. Geniy ortopedii [Genius of Orthopedics]. 2009; (3):5-11. [in Rus.]

2. Avrunin AS, Tikhilov RM, Shubnyakov II, Parshin LK, Melnikov BE. [Critical analysis of the mechanostat theory. Part I. Reorganization mechanisms of skeletal architecture]. Travmatologya i ortopediya Rossii. [Traumatology and Orthopedics of Russia]. 2012; (2):105- 115. [in Rus.]

3. Avrunin AS, Parshin LK, MelnikovBE.[Critical analysis of mechanostat theory. Part II. Stability of mechanometabolic skeleton environment and homeostatic parameters of calcium in organism]. Travmatologya i ortopediya Rossii [Traumatology and Orthopedics of Russia]. 2013; (1):127-137. [in Rus.]

4. Deryapa NR, Moshkin MP, Postnyy VS. Problemy meditsinskoy bioritmologii. [Problems of medical biorhythmology]. М.: Meditsina, 1985. 206 s. [in Rus.]

5. Komarov FI, Romanov YuA, Moiseyeva NI. [Chronomedicine – a new trend in biomedical science and practice] V kn.: Chronobiologiya i chronomeditsina. [Chronobiology and chronomedicine.] М., 1989. 400 s. [in Rus.]

6. Amano K, Miyake K, Borke JL, McNeil PL. Breaking biological barriers with a toothbrush. J Dent Res. 2007; 86(8):769-774.

7. Bloomfield SA. Contributions of physical activity to bone health over the lifespan. Topicsin Geriatric Rehabilitation.2005; 21(1):68-76.

8. Brighton CT, Strafford B, Gross SB, Leatherwood DF, Williams JL, Pollack SR. The proliferative and synthetic response of isolated calvarial bone cells of rats to cyclic biaxial mechanical strain. J Bone Joint Surg Am. 1991; 73(3):320-331.

9. Brighton CT, Fisher JRS, Levine SE, Corsetti JR, Reilly T, Landsman AS, Williams JL, Thibault LE. The biochemical pathway mediating the proliferative response of bone cells to a mechanical stimulus. J Bone Joint Surg Am. 1996; 78(9):1337-1347.

10. Burr DB, Milgrom C, Fyhrie D, Forwood M, Nyska M, Finestone A, Hoshaw S, Saiag E, Simkin A. In vivo measurement of human tibial strains during vigorous activity. Bone. 1996. 18(5):405-410.

11. Burr DB, Robling AG, Turner CH. Effects of biomechanical stress on bones in animals. Bone. 2002; 30(5): 781-786.

12. Carpenter CR, Stern ME. Emergency orthogeriatric: concepts and therapeutic alternatives. Emerg Med Clin North Am. 2010; 28(4):927-949.

13. Cowin SC. Mechanosensation and fluid transport in living bone. J Musculoskelet Neuronal Interact. 2002; 2(3):256-260.

14. Daroszewska A. Prevention and treatment of osteoporosis in women: an update. Obstetrics, gynaecology and reproductive medicine. 2012; 22(6):162-169.

15. de Jong WC, Koolstra JH, Korfage JAM, van Ruijven LJ, Langenbach GEJ. The daily habitual in vivo strain history of a non-weight-bearing bone. Bone. 2010; 46(1):196-202.

16. Dodd JS, Raleigh JA, Gross TS. Osteocyte hypoxia: a novel mechanotransduction pathway Am J Physiol Cell Physiol. 1999; 277(3 Pt 1):598-602.

17. Friedlander AL, Genant HK, Sadowsky S, Byl NN, Gluer CC. A two-year program of aerobics and weight training enhances bone mineral density of young women.J Bone Miner Res. 1995; 10(4):574-585.

18. Fritton SP, McLeod KJ, Rubin CT. Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J Biomech. 2000; 33(3):317-325.

19. Frost HM. Defining osteopenias and osteoporoses: another view (with insights from a New Paradigm). Bone. 1997; 20(5):385-391.

20. Goulet GC, Cooper DML., Coombe D, Zernicke RF. Influence of cortical canal architecture on lacunocanalicular pore pressure and fluid flow. Comput Methods Biomech Biomed Engin. 2008; 11(4):379-387.

21. Hamilton CJ, Thomas SG, Jamal SA. Associations between leisure physical activity participation and cortical bone mass and geometry at the radius and tibia in a Canadian cohort of postmenopausal women. Bone. 2010; 46(3):774-779.

22. Hsieh YF, Turner CH. Effects of loading frequency on mechanically induced bone formation. J Bone Miner Res. 2001; 16(5):918-924.

23. Kasturi GС, Adler RA. Osteoporosis: nonpharmacologic management. PM R. 2011; 3(6):562-572.

24. Lanyon LE, Hampson WGJ, Goodship AE, Shah JS. Bone deformation recorded in vivo from strain gauges the human tibial shaft. Acta Orthop Scand. 1975;46(2): 256-268.

25. Marini F, Brandi ML. Pharmacogenetics of osteoporosis: future perspectives. Calcif Tissue Int. 2009; 84(5):337-347.

26. Martin RB. Toward a unifying theory of bone remodeling. Bone. 2000; 26(1):1-6.

27. Mosley JR, Lanyon LE. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone. 1998; 23(4):313-318.

28. Mosley JR, Lanyon LE. Growth rate rather than gender determines the size of the adaptive response of the growing skeleton to mechanical strain. Bone. 2002; 30(1): 314- 319.

29. Nicolella DP, Bonewald LF, Moravits DE, Lankford J. Measurement of microstructural strain in cortical bone. Eur J Morphol. 2005; 42(1-2):23-29.

30. Nordstrom P, Thorsen K, Nordstrom G, Bergstrom E, Lorentzon R. Bone mass, muscle strength, and different body constitutional parameters in adolescent boys with a low or moderate exercise level. Bone. 1995; 17(4):351-356.

31. Okada S, Yoshida S, Ashrafi SH, Schraufnagel DE. The canalicular structure of compact bone in the rat at different ages. Microsc Microanal. 2002; 8(2):104-115.

32. Orellana MF, Smith AK, Waller JL, DeLeon EJr, Borke JL. Plasma membrane disruption in orthodontic tooth movement in rats. J Dent Res. 2002; 81(1):43-47.

33. Orellana MF, Borke JL, Major PW. Cell wounding as a mechanism for mechanotransduction in orthodontic tooth movement in rats. In: Biological mechanisms of tooth movement and craniofacial adaptation. Ed. by Z. Davidovitch, J. Mah. Boston, Massachusetts, USA: Harvard Society for the Advancement of Orthodontics, 2004; 1-9.

34. Orellana-Lezcano M.F., Major P.W., McNeil P.L., Borke J.L. Temporary loss of plasma membrane integrity in orthodontic tooth movement. Orthod Craniofac Res. 2005; 8(2):106- 113.

35. P ead MJ, Skerry TM, Lanyon LE. Direct transformation from quiescence to bone formation in the adult periosteum following a single brief period of bone loading. J Bone Miner Res. 1988; 3(6):647-656.

36. P feifer M, Sinaki M, Geusens P, Boonen S, Preisinger E, Minne HW. Musculoskeletal rehabilitation in osteoporosis: A review. J Bone Miner Res. 2004; 19(8):1208-1214.

37. P rendergast PJ. Mechanics applied to skeletal ontogeny and phylogeny. Meccanica. 2002; 37:317-334.

38. Raisz LG, An ES. Causes of age-related bone loss and bone fragility: an alternative view. J Bone Miner Res. 2001; 16(11):1948-1952.

39. Rawlinson SCF, Mosley JR, Suswillo RFL, Pitsillides AA, Lanyon LE. Calvarial and limb bone cells in organ and monolayer culture do not show the same early responses to dynamic mechanical strain. J Bone Miner Res. 1995;10(8):1225-1232.

40. Robling AG, Burr DB, Turner CH. Recovery periods restore mechanosensitivity to dynamically loaded bone. J ExpBiol. 2001; 204(Pt 19): 3389-3399.

41. Robling AG, Hinant FM, Burr DB, Turner CH. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res. 2002; 17(8):1545-1554.

42. Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am. 1984; 66(3):397-402.

43. Rubin CT, Bain SD, McLeod KJ. Suppression of the osteogenic response in the aging skeleton. Calcif Tissue Int. 1992; 50(4):306-313.

44. Saxon LK, Robling AG, Alam I, Turner CH. Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off. Bone. 2005; 36(3):454-464.

45. Skerry TM. One mechanostat or many? Modifications of the site-specific response of bone to mechanical loading by nature and nurture. J Musculoskelet Neuronal Interact. 2006; 6(2):122-127.

46. Skerry TM. The response of bone to mechanical loading and disuse: Fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys. 2008; 473(2):117-123.

47. Srinivasan S, Weimer DA, Agans SC, Bain SD, Gross TS. Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle. J Bone Miner Res. 2002; 17(9):1613-1620.

48. Srinivasan S, Agans SС, King KA, Moy NY, Poliachik SL, Gross TS. Enabling bone formation in the aged skeleton via rest-inserted mechanical loading. Bone. 2003; 33(6):946-955.

49. Srinivasan S, Ausk BJ, Prasad J, Threet D, Bain SD, Richardson TS, Gross TS. Rescuing loading induced bone formation at senescence. PLoS Comput Biol. 2010; 6(9): e1000924.

50. Tami AE, Nasser P, Verborgt O., Schaffler MB, Knothe Tate ML. The role of interstitial fluid flow in the remodeling response to fatigue loading. J Bone Miner Res. 2002; 17(11):2030-2037.

51. Tami AE, Schaffler MB, Knothe Tate M.L. Probing the tissue to subcellular level structure underlying bone’s molecular sieving function. Biorheology. 2003; 40(6):577-590.

52. Torrance AG, Mosley JR, Suswillo RF, Lanyon LE. Noninvasive loading of the rat ulna in vivo induces a strainrelated modeling response uncomplicated by trauma or periostal pressure. Calcif Tissue Int. 1994; 54(3):241-247.

53. Turner CH, Akhter MP, Raab DM, Kimmel DB, Recker RR. A noninvasive, in vivo model for studying strain adaptive bone modeling. Bone. 1991; 12(2):73-79.

54. Turner CH. Homeostatic control of bone structure: an application feedback theory. Bone. 1991; 12(3): 203-217.

55. Turner CH, Takano Y, Owan I. Aging changes mechanical loading thresholds for bone formation in rats. J Bone Miner Res. 1995; 10(10):1544-1549.

56. Turner CH, Robling AG. Exercise as an anabolic stimulus for bone. Curr Pharm Des. 2004; 10(21):2629-2641.

57. Umemura Y, Ishiko T, Yamauchi T, Kurono M, Mashiko S. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res. 1997; 12(9): 1480-1485.

58. Vanness DJ, Tosteson ANA. Estimating the opportunity costs of osteoporosis in the united states. Topics Geriatric Rehabilitation. 2005; 21(1):4-16.

59. Wang L, Ciani C, Doty SB, Fritton SP. Delineating bone’s interstitial fluid pathway in vivo. Bone. 2004; 34(3):499-509.

60. Warden SJ, Turner CH. Mechanotransduction in cortical bone is most efficient at loading frequencies of 5–10 Hz. Bone. 2004; 34(2):261-270.

61. Zhang P, Su M, Tanaka SM, Yokota H. Knee loading stimulates cortical bone formation in murine femurs. BMC Musculoskelet Disord. 2006; 7:73.


Для цитирования:


Аврунин А.С., Докторов А.А. ЗАВИСИМОСТЬ ОСТЕОГЕННОГО ЭФФЕКТА ОТ ХАРАКТЕРИСТИК МЕХАНИЧЕСКИХ НАГРУЗОК КОСТНЫХ СТРУКТУР. Травматология и ортопедия России. 2016;(2):88-100. https://doi.org/10.21823/2311-2905-2016-0-2-88-100

For citation:


Avrunin A.S., Doktorov A.A. DEPENDENCY OF OSTEOGENIC EFFECTS ON CHARACTERISTICS OF MECHANICAL LOAD APPLIED TO OSSEOUS STRUCTURES. Traumatology and Orthopedics of Russia. 2016;(2):88-100. (In Russ.) https://doi.org/10.21823/2311-2905-2016-0-2-88-100

Просмотров: 250


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2311-2905 (Print)
ISSN 2542-0933 (Online)