BIOMINERALOGICAL INVESTIGATION OF APATITE PIEZOELECTRICITY

Cover Page


Cite item

Abstract

Investigation of apatite piezoelectricity was conducted in order to assess piezoelectric properties of bone. In the first stage, mineralogical analysis of different apatite crystals, regarding their purity and fitness for the experiments was performed. After the crystals had been chosen, 0.8 mm-thick plates were cut, perpendicular and parallel to the crystallographic Z axis. The plates were then polished and dusted with gold. Electrodes were attached to the opposite surfaces of the plates with conductive glue. So prepared plates were hooked up to the EEG machine used for measuring electrical activity in the brain. The plates were then gently tapped to observe and register currents generated in them. Acquired data was processed by subtracting from the resulting graphs those generated by a hand movement, without tapping the plate. Results indicate that apatite plates have weak piezoelectric properties. Observed phenomenon may be translated to bone apatite, which would explain, at least partially, piezoelectric properties of bone. Acquired results suggest that there is a relation between the mechanical workload of bones (bone apatite) and their
electrical properties. Considering the massive internal surface of bones, they may be treated as a kind of internal “antenna” reacting not only to mechanical stimuli, but to changes in electromagnetic field as well. Observed phenomena no doubt significantly influence the biological processes occurring in bones and the whole human body.

About the authors

M. Pawlikowski

AGH University of Science and Technology, Lab. Biomineralogy, Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059 Kraków, Poland

Author for correspondence.
Email: mpawlik@uci.agh.edu.pl

professor, AGH University of Science and Technology, Lab. Biomineralogy, Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection

Russian Federation

References

  1. Ahn AC, Grodzinsky AJ. Relevance of collagen piezoelectricity to “Wolff’s law”: a critical review. Med. Eng. Phys. 2009; 31:733-741.
  2. Anderson JC, Eriksson C. Electrical properties of wet collagen. Nature. 1968; 21:166-168.
  3. Aschero G, Gizdulich P, Mango F, Romano SM. Converse piezoelectric effect detected in fresh cow femur bone. J. Biomech. 1996; 29:1169-1174.
  4. Basset CA, Becker OR. Generation of electric potentials by bone in response to mechanical stress. Science. 1962; 137:1063-1064.
  5. Cerquiglini S, Cignitti M, Salleo A. On the origin of electrical effects produced by stress in the hard tissues of living organisms. Life Science. 1967; 6(24): 2651-2660.
  6. Curie J, Curie P. Développement, par pression, de l’électricité polaire dans les cristaux hémièdre à faces inclinées. Présentée par M. Friedel. Comptes rendus de l’Académie des sciences. 1880a: 91:294-295.
  7. Curie J, Curie P. Sur l’électricité polaire dans les cristaux hémièdre à faces inclinées. Présentée par M. Desains. Comptes rendus de l’Académie des sciences. 1880b; 91:383-386.
  8. Curie J, Curie P. Lois du dégagement de l’électricité par pression, dans la tourmaline. Présentée par M. Friedel. Comptes rendus de l’Académie des sciences. 1881a, 92: 186-188.
  9. Curie J, Curie P. Les cristaux hémièdre à faces inclinées, comme sourcesconstants d’électricité. Présentée par M. Desains. Comptes rendus de l’Académie des sciences. 1881b; 93: 204-207.
  10. Curie J, Curie P. Sur les phénomènes électriques de la tourmaline et des cristaux hémièdre à faces inclinées.Présentée par M. Friedel. Comptes rendus de l’Académie des sciences. 1881c; 92:350-353.
  11. Curie J, Curie P. Contractions et dilatations produites par des tensions électriques dans les cristaux hémièdres à faces inclinées, Présentée par M. Friedel. Comptes rendus de l’Académie des sciences. 1881d; 93:1137-1140.
  12. Curie J, Curie P. Déformations électriques du quartz. Présentée par M. Desains. Comptes rendus de l’Académie des sciences. 1882a; 95:914-917.
  13. Curie J, Curie P. Phénomènes électriques des cristaux hémièdre à faces inclinées. J de Physique. 1882b; 2nd series, 1:245-251.
  14. Curie J, Curie P. Quartz piézo-électrique. Phil Mag. 1893; 36:340-342.
  15. Curie J, Curie P. Dilatation électrique du quartz. J de Physique. 1889; 2nd series, 8:149-170.
  16. Fukada E, Yasuda I. On the Piezoelectric Effect of Bone. J. Phys. Soc. Jpn. 1957; 12(10):1158-1162.
  17. Garland DE, Moses B, Salyer W. Long-term follow-up of fracture nonunions treated with PEMFs. Contemp. Otrhop. 1991; 3(22): 295-302.
  18. Jacobson-Kram D. Tepper J. Kuo P et al. Evaluation of potential genotoxicity of pulsed electric end electromagnetic fields used for bone growth stimulation. Mutation Research. 1997; 388:45-57.
  19. Johnson MW, Chakkalakal DA, Harper RA, Katz JL. Comparison of the electromechanical effects in wet and dry bone. J Biomech. 1980; 13:437-442.
  20. Korostoff E. A linear piezoelectric model for characterizing stress generated potentials in bone. J Biomech. 1979; 12:335-347.
  21. P awlikowski M, Niedźwiedzki T, Mineralogia kości (Mineralogy of bones). Polish Acad. Sci. Kraków. 2002: 111 р.
  22. P ienkowski D. Pollack S.. The origin of stress-generated potentials in fluid-saturated bone. J. Orthop. Res. 1983; 1:30-41.
  23. Salzstein RA, Pollack SR, Mak AFT, Petrov N., Electromechanical potentials in cortical bone . J. Biomech. 1987; 20(3):261-270 .
  24. Starkebaum W., Pollack S.R., Korostoff E.J. Microelectrode studies of stress-generated potentials in four-point bending of bone, J. Biomed Mater Res. 1979; 13(5):729-51.
  25. Szewczenko J. Zjawiska elektryczne w kościach długich. Przegl. Elektrotechn. 2005; 81(12):94-97.
  26. Weinbaum S, Cowin SC, Zeng Yu. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses, J Biomech. 1994; 27:339-360.
  27. Weigert M, Wehahn C. The influence of electric potentials on plated bones. Clin. Orthop. 1977; 124:20-30.
  28. Williams WS, Breger L. Analysis of stress distribution and piezoelectric response in cantilever bending of bone and tendon. Ann. N.Y. Acad. Sci. 1974; 238:121-130.
  29. Elliot JC, Wilson RM, Dowker SEP. Apatite structure. advances in X-ray analysis. 2002; 45:172-181.
  30. Yasuda I. Fundamental aspects of fracture treatment. J. Kyoto Med. Soc. 1953; 4:395-406.
  31. Żuk T, Dziak A, Gusta A. Podstawy ortopedii i traumatologii. Warszawa: PZWL; 1980. 42 р.

Copyright (c) 2016



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies