Micro-Arc Zn- and Ag-Containing Coatings for Implants with Complex Porous Architecture Obtained by 3D Printing Method from Titanium Alloy
- Authors: Sharkeev Y.P.1,2, Sedelnikova M.B.1, Tolkacheva T.V.1, Shcheglova N.A.3, Panchenko A.A.3, Krasovsky I.B.3, Solomatina М.V.4, Efimenko M.V.5, Pavlov V.V.5, Cherdantseva L.A.4,5, Kirilova I.A.5
-
Affiliations:
- Institute of Strength Physics and Materials
- National Research Tomsk Polytechnic University
- Logeeks Medical Systems
- Federal Research Center of Fundamental and Translational Medicine
- Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics
- Issue: Vol 26, No 2 (2020)
- Pages: 109-119
- Section: Theoretical and experimental studies
- Submitted: 09.07.2020
- Accepted: 09.07.2020
- Published: 09.07.2020
- URL: https://journal.rniito.org/jour/article/view/1483
- DOI: https://doi.org/10.21823/2311-2905-2020-26-2-109-119
- ID: 1483
Cite item
Abstract
Relevance. The creation of porous three-dimensional materials for bone defects compensation and its subsequent regeneration is an important direction of medical materials science. The key issue in the interaction of an implant and bone tissue is the surface properties of the implant.
The purpose of the study is to evaluate the physicochemical properties and compatibility of tissues of a living organism and porous implants with calcium phosphate Zn- and Ag-containing formed by microarc oxidation.
Materials and Methods. Implants with various types of porous structure were made by direct laser sintering of titanium alloy Ti-6Al-4V powders. The calcium phosphate coatings, including Zn- and Ag-containing, were formed on the implants surface by microarc oxidation.
Results. Coatings, deposited in electrolytes of various compositions, were uniformly distributed over the implants mesh structure. The phase composition of Zn-containing coatings, deposited in the acidic electrolyte, was represented by amorphous calcium phosphates. Ag-containing coatings, deposited in the alkaline electrolyte, had an amorphous-crystalline structure, the crystalline phase of which was identified as tricalcium phosphate in the α and β modifications. The samples of extracts of calcium phosphate Zn and Ag-containing coatings were co-cultured with pFb line of the human postnatal fibroblasts for 48 hours at 37°C in 5% CO2 atmosphere. The MTT test revealed a high metabolic activity of the co-cultured fibroblasts in comparison with the fibroblasts of control.
Conclusion. The pFb line of the human postnatal fibroblasts retained their viability for 48 hours of co-culturing with calcium-phosphate Zn- and Ag-containing coatings. The tested product and its components did not negatively affect the cellular respiration. However, further studies are needed to determine the rate of bioresorption and the degree of antibacterial activity of calcium-phosphate Zn- and Ag-containing coatings.
About the authors
Yu. P. Sharkeev
Institute of Strength Physics and Materials;National Research Tomsk Polytechnic University
Email: fake@neicon.ru
Yurii P. Sharkeev — Dr. Sci. (Phys.-Math.), Professor, Head of the Laboratory of Physics of Nanostructured Biocomposites; Professor
Tomsk
Russian FederationM. B. Sedelnikova
Institute of Strength Physics and Materials
Email: fake@neicon.ru
Mariya B. Sedelnikova — Dr. Sci. (Tech.), Assistant Professor, Senior Researcher, Laboratory of Physics of Nanostructured Biocomposites
Tomsk
Russian FederationT. V. Tolkacheva
Institute of Strength Physics and Materials
Email: fake@neicon.ru
Tatyana V. Tolkacheva — Leading Technologist, Laboratory of Physics of Nanostructured Biocomposites
Tomsk
Russian FederationN. A. Shcheglova
Logeeks Medical Systems
Email: fake@neicon.ru
Natalya A. Shcheglova — Development Director
Novosibirsk
Russian FederationA. A. Panchenko
Logeeks Medical Systems
Email: fake@neicon.ru
Andrey A. Panchenko — Technical Director
Novosibirsk
Russian FederationI. B. Krasovsky
Logeeks Medical Systems
Email: fake@neicon.ru
Igor B. Krasovsky — Director
Novosibirsk
Russian FederationМ. V. Solomatina
Federal Research Center of Fundamental and Translational Medicine
Email: fake@neicon.ru
Мaria V. Solomatina — Cand. Sci. (Biol.), Researcher, Department of Development and Testing of Pharmacological Agents
Novosibirsk
Russian FederationM. V. Efimenko
Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics
Email: fake@neicon.ru
Maxim V. Efimenko — Orthopedic Surgeon, Department of Traumatology and Orthopedics
Novosibirsk
Russian FederationV. V. Pavlov
Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics
Email: fake@neicon.ru
Vitaliy V. Pavlov — Dr. Sci. (Med.), Head of the Research Department
Novosibirsk
Russian FederationL. A. Cherdantseva
Federal Research Center of Fundamental and Translational Medicine;Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics
Email: fake@neicon.ru
Liliya A. Cherdantseva — Cand. Sci. (Med.), Head of the Laboratory for the Procurement and Preservation of Tissues; Researcher
Novosibirsk
Russian FederationI. A. Kirilova
Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics
Author for correspondence.
Email: IKirilova@niito.ru
Irina A. Kirilova — Dr. Sci. (Med.), Deputy Director
Novosibirsk
Russian FederationReferences
- Bassous N.J., Jones C.L., Webster T.J. 3-D printed Ti-6Al-4V scaffolds for supporting osteoblast and restricting bacterial functions without using drugs: predictive equations and experiments. Acta Biomater. 2019;96:662-673. doi: 10.1016/j.actbio.2019.06.055.
- Ahangar P., Cooke M.E., Weber M.H., Rosenzweig D.H. Current biomedical applications of 3D printing and additive manufacturing. Review Appl Sci. 2019;9(8):1713. doi: 10.3390/app9081713.
- Zhang Y., Li J., Che S., Yang Z., Tia Y. Chemical leveling mechanism and oxide film properties of additively manufactured Ti–6Al–4V alloy. J Mater Sci. 2019;54:13753-13766. doi: 10.1007/s10853-019-03855-4.
- McHugh K.J., Nguyen T.D., Linehan A.R., Yang D., Behrens A.M., Rose S. et al. Fabrication of fillable microparticles and other complex 3D microstructures. Science. 2017;357(6356):1138-1142. doi: 10.1126/science.aaf7447.
- Arabnejad S., Johnston B., Tanzer M., Pasini D. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J Orthop Res. 2017;35(8):1774-1783. doi: 10.1002/jor.23445.
- Surmenev R.A., Surmeneva M.A., Ivanova A.A. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis--areview. Acta Biomater. 2014;10(2):557-579. doi: 10.1016/j.actbio.2013.10.036.
- Falde E.J., Yohe S.T., Colson Y.L., Grinstaff M.W. Superhydrophobic materials for biomedical applications. Biomaterials. 2016;104:87-103. doi: 10.1016/j.biomaterials.2016.06.050.
- Otitoju T.A., Ahmad A.L., Ooi B.S. Superhydrophilic (superwetting) surfaces: A review on fabrication and application. J Industr Engineer Chemistry. 2017;47:19-40. doi: 10.1016/j.jiec.2016.12.016.
- Denry I., Kuhn L.T. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent Mater. 2016;32(1):43-53. doi: 10.1016/j.dental.2015.09.008.
- Sharma S., Verma A., Teja B.V., Pandey G., Mittapelly N., Trivedi R. et al. An insight into functionalized calcium based inorganic nanomaterials in biomedicine: Trends and transitions. Colloids Surf B Biointerfaces. 2015;133:120-139. doi: 10.1016/j.colsurfb.2015.05.014.
- Rizwan M., Alias R., Zaidi U.Z., Mahmoodian R., Hamd M. Surface modification of valve metals using plasma electrolytic oxidation for antibacterial applications: A review. J Biomed Mater Res A. 2018;106(2):590-605. doi: 10.1002/jbm.a.36259.
- Liu S., Li B., Liang C., Wang H., Qiao Z., Formation mechanism and adhesive strength of a hydroxyapatite/TiO2 composite coating on a titanium surface prepared by micro-arc oxidation. Applied Surf Sci. 2016;362:109-114. doi: 10.1016/j.apsusc.2015.11.086.
- Гнеденков С.В., Шаркеев Ю.П., Синебрюхов С.Л., Хрисанова О.А., Легостаева Е.В., Завидная А.Г. и др. Кальций-фосфатные биоактивные покрытия на титане. Вестник ДВО РАН. 2010;(5):47-57.
- Седельникова М.Б., Шаркеев Ю.П., Комарова Е.Г., Толкачева Т.В. Влияние параметров процесса микро-дугового оксидирования на формирование и свойства биопокрытий на основе волластонита и фосфатов кальция. Физика и химия обработки материалов. 2016;(6):57-63.
- Шаркеев Ю.П., Шейкин В.В., Седельникова М.Б., Легостаева Е.В., Комарова Е.Г., Ермаков В.В. и др. Модифицирование поверхности титановых медицинских скобок для сшивающих аппаратов методом микродугового оксидирования. Перспективные материалы. 2015;(10):46-55.
- Сафронова Т.В., Путляев В.И. Медицинское неорганическое материаловедение в России: кальцийфос-фатные материалы. Наносистемы: физика, химия, математика. 2013;4(1):24-47.
- Dorozhkin S.V. Calcium orthophosphate deposits: Preparation, properties and biomedical applications. Mater Sci Eng C Mater Biol Appl. 2015;55:272-326. doi: 10.1016/j.msec.2015.05.033.
- Aydogan D.T., Muhaffel F., Kilic M.M., Acar O.K, Cempura G., Baydogan M. et al. Optimization of microarc oxidation electrolyte for fabrication of antibacterial coating on titanium. Mater Technol. 2018;33(2):119-126. doi: 10.1080/10667857.2017.1391931.
- Widmer A.F. New developments in diagnosis and treatment of infection in orthopedic implants. Clin Infect Dis. 2001;33 Suppl 2:S94-S106. doi: 10.1086/321863.
- Morrison C., Macnair R., MacDonald C., Wykman A., Goldie I., Grant M.H. In vitro biocompatibility testing of polymers for orthopaedic implants using cultured fibroblasts and osteoblasts. Biomaterials. 1995;16(13): 987-992. doi: 10.1016/0142-9612(95)94906-2.
- Moller B., Terheyden H., Acil Y., Purcz N.M., Hertrampf K., Tabakov A. et al. A comparison of biocompatibility and osseointegration of ceramic and titanium implants: an in vivo and in vitro study. Int J Oral Maxillofac Surg. 2012;41(5):638-645. doi: 10.1016/j.ijom.2012.02.004.
- Sedelnikova M.B., Komarova E.G., Sharkeev Yu.P., Ugodchikova A.V., Mushtovatova L.S., Karpova M.R. et al. Zn-, Cu- or Ag-incorporated micro-arc coatings on titanium alloys: Properties and behavior in synthetic biological media. Surface Coating Technology. 2019;369:52-68. doi: 10.1016/j.surfcoat.2019.04.021.
- Wallace S.M., Walton B.I., Kharbanda R.K., Hardy R., Wilson A.P., Swanton R.H. Mortality from infective endocarditis: clinical predictors of outcome. Heart. 2002;88(1):53-60. doi: 10.1136/heart.88.1.53.
- Furko M., Jiang Y., Wilkins T.A., Balázsi C. Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials. Mater Sci Eng С. 2016;62:249-259. doi: 10.1016/j.msec.2016.01.060.
- Евдокимов П.В., Путляев В.И., Мерзлов Д.А., Шаталова Т.Б., Сафронова Т.В., Климашина Е.С., Чурагулов Б.Р. Полиморфизм Ca3(PO4)2. Наносистемы: физика, химия, математика. 2013;4(1):48-53.