Bone Xenografts in Trauma and Orthopaedics (Analytical Review)

Cover Page


Cite item

Abstract

Purpose of the analytical review — to evaluate the application experience of bone xenografts in trauma and orthopaedics surgery. Methods. Data search was performed in the electronic databases of PubMed and eLIBRARY with depth of 20 years. Results. The authors identified 13 papers which described the application experience of bone xenografts in trauma surgery and orthopaedics. The highest efficiency (from 92 to 100%) was reported for cases of xenografts use to replace defects in intraarticular fractures and revision arthroplasty. Unsatisfactory outcomes were related to cases with no integration and graft rejection. The least efficiency (from 41,9 to 46,1%) was reported in reconstructive foot surgery. No effect of bone xenografts was observed for replacement of defects in cases of pseudoarthrosis. The most frequent complication was graft material infection. The summarized literature data provided the calculated share of complications following xenograft use of 7,53% (18 out of 239 cases, CI 5-95%, 4,53-11,21). Two areas were identified for improvement of technical and biological properties of bone xenografts: 1. Modification of original xeno-matrix (enhancement of purification technique, alteration of structure of chemical composition of the bone matrix); 2. Augmentation of matrix volume by additional elements (biologically active agents, stem cells). It’s noted that demand for xenografts in traumatology and orthopaedics can increase after refining and expanding the indications for clinical use. Conclusion. Bone xenografts used in the modern trauma surgery and orthopaedics to replace bone defects in revision arthroplasty as well as in certain fracture types. Such material is relatively safe and its ability to be modified allows to improve its biological properties.

About the authors

M. V. Stogov

Ilizarov National Medical Research Center of Traumatology and Orthopedics

Author for correspondence.
Email: stogo_off@list.ru

Maksim V. Stogov — Dr. Sci. (Biol.), Associate Professor, Leading Researcher

Kurgan

Russian Federation

D. V. Smolentsev

Med-Inz-Bio LLC

Email: fake@neicon.ru

Dmitry V. Smolentsev — Director

Penza

Russian Federation

E. A. Kireeva

Ilizarov National Medical Research Center of Traumatology and Orthopedics

Email: fake@neicon.ru

Elena A. Kireeva — Cand. Sci. (Biol.), Senior Researcher

Kurgan

Russian Federation

References

  1. Li D., Bi L., Meng G.L., Liu M., Jin J., Liu Y. et al. Multi-variety bone bank in China. Cell Tissue Bank. 2010;11(3):233-240. doi: 10.1007/s10561-009-9151-2.
  2. Oryan A., Alidadi S., Moshiri A., Maffulli N. Bone r generative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9(1):18. doi: 10.1186/1749-799X-9-18.
  3. Dimitriou R., Jones E., McGonagle D., Giannoudis P.V. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66. doi: 10.1186/1741-7015-9-66.
  4. Накоскин А.Н., Силантьева Т.А., Накоскина Н.В., Талашова И.А., Тушина Н.В. Репаративные процессы при алло- и ксеноимплантации внеклеточного матрикса кости. Патологическая физиология и экспериментальная терапия. 2018;62(3):60-66. doi: 10.25557/0031-2991.2018.03.60-66.
  5. Athanasiou V.T., Papachristou D.J., Panagopoulos A., Saridis A., Scopa C.D., Megas P. Histological comparison of autograft, allograft-DBM, xenograft, and synthetic grafts in a trabecular bone defect: an experimental study in rabbits. Med Sci Monit. 2010;16(1):BR24-31.
  6. Galia C.R., Lourenço A.L., Rosito R., Souza Macedo C.A., Camargo L.M. Physicochemical characterization of lyophilized bovine bone grafts. Rev Bras Ortop. 2015;46(4):444-451. doi: 10.1016/S2255-4971(15)30260-3.
  7. Анастасиева Е.А., Садовой М.А., Воропаева А.А., Кирилова И.А. Использование ауто и аллотрансплантатов для замещения костных дефектов при резекциях опухолей костей. Травматология и ортопедия России. 2017;23(3):148-155. doi: 10.21823/2311-2905-2017-23-3-148-155.
  8. Бовкис Г.Ю., Куляба Т.А., Корнилов Н.Н. Компенсация дефектов метаэпифизов бедренной и большеберцовой костей при ревизионном эндопротезировании коленного сустава — способы и результаты их применения (обзор литературы). Травматология и ортопедия России. 2016;22(2):101-113. doi: 10.21823/2311-2905-2016-0-2-101-113.
  9. Ваза А.Ю., Файн А.М., Иванов П.А., Клюквин И.Ю., Сластинин В.В., Боровкова Н.В., Хватов В.Б. Анализ применения различных вариантов костной пластики у пострадавших с внутрисуставными переломами. Трансплантология. 2015;(4):6-12.
  10. Зуев П.А., Павленко Н.Н., Зуев П.П. Поиск о ного способа операции ревизионного эндопротезирования тазобедренного сустава. Гений ортопедии. 2011;(1):134-139.
  11. Кирилова И.А., Садовой М.А., Подорожная В.Т. Сравнительная характеристика материалов для костной пластики: состав и свойства. Хирургия позвоночника. 2012;(3):72-83. doi: 10.14531/ss2012.3.72-83.
  12. Куляба Т.А., Корнилов Н.Н., Селин А.В., Разоренов В.Л., Кроитору И.И., Петухов А.И. и др. Способы компенсации костных дефектов при ревизионном эндопротезировании коленного сустава. Травматология и ортопедия России. 2011;61(3):5-12. doi: 10.21823/2311-2905-2011-0-3-5-12.
  13. Слизовский Г.В., Кужеливский И.И. Современное состояние проблемы лечения костной патологии у детей. Бюллетень сибирской медицины. 2012;11(2): 64-76. doi: 10.20538/1682-0363-2012-2-64-76.
  14. Ibrahim M.S., Raja S., Haddad F.S. Acetabular impaction bone grafting in total hip replacement. Bone Joint J. 2013;95-B(11 Suppl A):98-102. doi: 10.1302/0301-620X.95B11.32834.
  15. Leung H.B., Fok M.W., Chow L.C., Yen C.H. Cost c parison of femoral head banking versus bone substitutes. J Orthop Surg (Hong Kong). 2010;18(1): 50-54. doi: 10.1177/230949901001800111.
  16. Shibuya N., Jupiter D.C. Bone graft substitute: allograft and xenograft. Clin Podiatr Med Surg. 2015;32(1):21-34. doi: 10.1016/j.cpm.2014.09.011.
  17. Бойко Е.М., Брусницын Д.А., Долгалев А.А., Зеленский В.А. Малоинвазивный метод направленной костной регенерации при атрофии альвеолярного гребня. Медицинский алфавит. 2017;298(1):5-9.
  18. Столяров М.В., Смирнова А.В., Киртаева А.В., Кандейкина Н.В. Восстановление костной ткани челюсти с применением остеотропного материала «Остеоматрикс». Acta Medica Eurasica. 2016;(3):39-48.
  19. Aghazadeh A., Rutger Persson G., Renvert S. A s gle-centre randomized controlled clinical trial on the adjunct treatment of intra-bony defects with autogenous bone or a xenograft: results after 12 months. J Clin Periodontol. 2012;39(7):666-673. doi: 10.1111/j.1600-051X.2012.01880.x.
  20. Al Qabbani A., Al Kawas S., A Razak N.H., Al Bayatti S.W., Enezei H.H., Samsudin A.R. et al. Three-dimensional radiological assessment of alveolar bone volume preservation using bovine bone xenograft. J Craniofac Surg. 2018;29(2):e203-e209. doi: 10.1097/SCS.0000000000004263.
  21. Benlidayi M.E., Tatli U., Kurkcu M., Uzel A., Oztunc H. Comparison of bovine-derived hydroxyapatite and autogenous bone for secondary alveolar bone grafting in patients with alveolar clefts. J Oral Maxillofac Surg. 2012;70(1):e95-e102. doi: 10.1016/j.joms.2011.08.041.
  22. De Bruyckere T., Eghbali A., Younes F., Cleymaet R., Jacquet W., De Bruyn H., Cosyn J. A 5-year prospective study on regenerative periodontal therapy of infrabony defects using minimally invasive surgery and a collagen-enriched bovine-derived xenograft. Clin Oral Investig. 2018;22(3):1235-1242. doi: 10.1007/s00784-017-2208-x.
  23. Jambhekar S., Kernen F., Bidra A.S. Clinical and h logic outcomes of socket grafting after flapless tooth extraction: a systematic review of randomized controlled clinical trials. J Prosthet Dent. 2015;113(5):371-382. doi: 10.1016/j.prosdent.2014.12.009.
  24. Lima R.G., Lima T.G., Francischone C.E., Turssi C., Souza Picorelli Assis N.M., Sotto-Maior B.S. Bone Volume dynamics and implant placement torque in horizontal bone defects reconstructed with autologous or xenogeneic block bone: a randomized, controlled, split-mouth, prospective clinical trial. Int J Oral Maxillofac Implants. 2018;33(4):888-894. doi: 10.11607/jomi.6288.
  25. Nam J.W., Khureltogtokh S., Choi H.M., Lee A.R., Park Y.B., Kim H.J. Randomised controlled clinical trial of augmentation of the alveolar ridge using recombinant human bone morphogenetic protein 2 with hydroxyapatite and bovine-derived xenografts: comparison of changes in volume. Br J Oral Maxillofac Surg. 2017;55(8):822-829. doi: 10.1016/j.bjoms.2017.07.017.
  26. Goff T., Kanakaris N.K., Giannoudis P.V. Use of bone graft substitutes in the management of tibial plateau fractures. Injury. 2013;44 Suppl 1:S86-94. doi: 10.1016/S0020-1383(13)70019-6.
  27. Кутепов С.М., Волокитина Е.А., Гилев М.В., Антониади Ю.В., Помогаева Е.В. Аугментация костных дефектов дистального отдела большеберцовой кости синтетическим b-трикальций фосфатом и ксенопластическим материалом «Остеоматрикс» при хирургическом лечении внутрисуставных импрессионных переломов. Гений ортопедии. 2016;(3):14-20. doi: 10.18019/1028-4427-2016-3-14-20.
  28. Rhodes J., Mansour A., Frickman A., Pritchard B., Flynn K., Pan Z. et al. Comparison of allograft and bovine xenograft in calcaneal lengthening osteotomy for flatfoot deformity in cerebral palsy. J Pediatr Orthop. 2017;37(3):e202e208. doi: 10.1097/BPO.0000000000000822.
  29. Kubosch E.J., Bernstein A., Wolf L., Fretwurst T., Nelson K., Schmal H. Clinical trial and in-vitro study comparing the efficacy of treating bony lesions with allografts versus synthetic or highly-processed xenogeneic bone grafts. BMC Musculoskelet Disord. 2016;17:77. doi: 10.1186/s12891-016-0930-1.
  30. Makridis K.G., Ahmad M.A., Kanakaris N.K., Fragkakis E.M., Giannoudis P.V. Reconstruction of iliac crest with bovine cancellous allograft after bone graft harvest for symphysis pubis arthrodesis. Int Orthop. 2012;36(8):1701-1707. doi: 10.1007/s00264-012-1572-z.
  31. Загородний Н.В., Левин В.В., Канаев А.С., Саващук Д.А., Павлов С.А., Панасюк А.Ф., Абакиров М.Д. Ревизионное эндопротезирование тазобедренного сустава с использованием «Остеоматрикса». Политравма. 2011;(3):48-54.
  32. Diesel C.V., Ribeiro T.A., Guimarães M.R., Macedo C.A.S, Galia C.R. Acetabular revision in total hip arthroplasty with tantalum augmentation and lyophilized bovine xenograft. Rev Bras Ortop. 2017;52(Suppl 1):46-51. doi: 10.1016/j.rboe.2017.08.009.
  33. Meyer S., Floerkemeier T., Windhagen H. Histological osseointegration of Tutobone: first results in human. Arch Orthop Trauma Surg. 2008;128(6):539-544. doi: 10.1007/s00402-007-0402-z.
  34. Levai J.P., Bringer O., Descamps S., Boisgard S. Xenograftrelated complications after filling valgus open wedge tibial osteotomy defects. Rev Chir Orthop Reparatrice Appar Mot. 2003;89(8):707-711.
  35. Charalambides C., Beer M., Cobb A.G. Poor results a ter augmenting autograft with xenograft (Surgibone) in hip revision surgery: a report of 27 cases. Acta Orthop. 2005;76(4):544-549. doi: 10.1080/17453670510041547.
  36. Shibuya N., Holloway B.K., Jupiter D.C. A comparative study of incorporation rates between non-xenograft and bovine-based structural bone graft in foot and ankle surgery. J Foot Ankle Surg. 2014;53(2):164-167. doi: 10.1053/j.jfas.2013.10.013.
  37. Ledford C.K., Nunley J.A. 2nd, Viens N.A., Lark R.K. Bovine xenograft failures in pediatric foot reconstructive surgery. J Pediatr Orthop. 2013;33(4):458-463. doi: 10.1097/BPO.0b013e318287010d.
  38. Elliot R.R., Richards R.H. Failed operative treatment in two cases of pseudarthrosis of the clavicle using internal fixation and bovine cancellous xenograft (Tutobone). J Pediatr Orthop B. 2011;20(5):349-353. doi: 10.1097/BPB.0b013e328346c010.
  39. Волокитина Е.А., Хабиб М.С.С. Эндопротезирование тазобедренного сустава при деформациях и дефектах вертлужной впадины (обзор литературы). Уральский медицинский журнал. 2018;156(1):56-63.
  40. Сорокин Г.В., Боровков В.Н., Еремин А.В., Орлов А.А. Методы стимуляции репаративной регенерации при лечении переломов конечностей с применением новых биотехнологий. Кафедра травматологии и ортопедии. 2012;(2):36-40.
  41. Li X., Lin Z., Duan Y., Shu X., Jin A., Min S., Yi W. Repair of large segmental bone defects in rabbits using BMP and FGF composite xenogeneic bone. Genet Mol Res. 2015;14(2):6395-6400. doi: 10.4238/2015.June.11.15.
  42. Liu F., Wells J.W., Porter R.M., Glatt V., Shen Z., Schinhan M. et al. Interaction between living bone particles and rhBMP-2 in large segmental defect healing in the rat femur. J Orthop Res. 2016;34(12):2137-2145. doi: 10.1002/jor.23255.
  43. Long B., Dan L., Jian L., Yunyu H., Shu H., Zhi Y. Evaluation of a novel reconstituted bone xenograft using processed bovine cancellous bone in combination with purified bovine bone morphogenetic protein. Xenotransplantation. 2012;19(2):122-132. doi: 10.1111/j.1399-3089.2012.00694.x.
  44. Oryan A., Alidadi S., Moshiri A., Bigham-Sadegh A. Bone morphogenetic proteins: a powerful osteoinductive compound with non-negligible side effects and limitations. Biofactors. 2014;40(5):459-481. doi: 10.1002/biof.1177.
  45. Tovar N., Jimbo R., Gangolli R., Witek L., Lorenzoni F., Marin C. et al. Modification of xenogeneic graft materials for improved release of P-15 peptides in a calvarium defect model. J Craniofac Surg. 2014;25(1):70-76. doi: 10.1097/SCS.0b013e3182a2dfe7.
  46. Bi L., Hu Y., Fan H., Meng G., Liu J., Li D., Lv R. Treatment of contaminated bone defects with clindamycin-reconstituted bone xenograft-composites. J Biomed Mater Res B Appl Biomater. 2007;82(2):418-427. doi: 10.1002/jbm.b.30747.
  47. Lewis C.S., Katz J., Baker M.I., Supronowicz P.R., Gill E., Cobb R.R. Local antibiotic delivery with bovine cancellous chips. J Biomater Appl. 2011;26(4):491-506. doi: 10.1177/0885328210375729.
  48. Skelly J.D., Lange J., Filion T.M., Li X., Ayers D.C., Song J. Vancomycin-bearing synthetic bone graft delivers rhBMP-2 and promotes healing of critical rat femoral segmental defects. Clin Orthop Relat Res. 2014;472(12): 4015-4023. doi: 10.1007/s11999-014-3841-1.
  49. Lozano-Carrascal N., Satorres-Nieto M., Delgado-Ruiz R., Maté-Sánchez de Val J.E., Gehrke S.A., GargalloAlbiol J., Calvo-Guirado J.L. Scanning electron microscopy study of new bone formation following small and large defects preserved with xenografts supplemented with pamidronate-A pilot study in Fox-Hound dogs at 4 and 8 weeks. Ann Anat. 2017;209:61-68. doi: 10.1016/j.aanat.2016.09.009.
  50. Oryan A., Alidadi S., Moshiri A. Plateletrich plasma for bone healing and regeneration. Expert Opin Biol Ther. 2016;16(2):213-232. doi: 10.1517/14712598.2016.1118458.
  51. Бухарова Т.Б., Волков А.В., Воронин А.С., Филимонов К.А., Чаплыгин С.С., Мурушиди М.Ю. и др. Разработка тканеинженерной конструкции на основе мультипотентных стромальных клеток жировой ткани человека, трансфицированных геном костного морфогенетического белка BMP-2. Клиническая и экспериментальная морфология. 2013;5(1):45-51.
  52. Brett E., Tevlin R., McArdle A., Seo E.Y., Chan C.K.F., Wan D.C., Longaker M.T. Human adipose-derived stromal cell isolation methods and use in osteogenic and adipogenic in vivo applications. Curr Protoc Stem Cell Biol. 2017;43:2H.1.1-2H.1.15. doi: 10.1002/cpsc.41.
  53. Chen M., Xu Y., Zhang T., Ma Y., Liu J., Yuan B. et al. Mesenchymal stem cell sheets: a new cell-based strategy for bone repair and regeneration. Biotechnol Lett. 2019;41(3):305-318. doi: 10.1007/s10529-019-02649-7.
  54. García J.R., García A.J. Biomaterial-mediated strategies targeting vascularization for bone repair. Drug Deliv Transl Res. 2016;6(2):77-95. doi: 10.1007/s13346-015-0236-0.
  55. Oryan A., Kamali A., Moshiri A., Baghaban Eslaminejad M. Role of mesenchymal stem cells in bone regenerative medicine: What is the evidence? Cells Tissues Organs. 2017;204(2):59-83. doi: 10.1159/000469704.
  56. Tabatabaei F.S., Samadi R., Tatari S. Surface c istics of three commercially available grafts and adhesion of stem cells to these grafts. Biomed Mater Eng. 2017;28(6):621-631. doi: 10.3233/BME-171700.
  57. Zhao M., Zhou J., Li X., Fang T., Dai W., Yin W., Dong J. Repair of bone defect with vascularized tissue engineered bone graft seeded with mesenchymal stem cells in rabbits. Microsurgery. 2011;31(2):130-137. doi: 10.1002/micr.20854.
  58. Qiao W., Liu R., Li Z., Luo X., Huang B., Liu Q. et al. Contribution of the in situ release of endogenous cations from xenograft bone driven by fluoride incorporation toward enhanced bone regeneration. Biomater Sci. 2018;6(11):2951-2964. doi: 10.1039/c8bm00910d.
  59. Cho J.S., Yoo D.S., Chung Y.C., Rhee S.H. Enhanced bioactivity and osteoconductivity of hydroxyapatite through chloride substitution. J Biomed Mater Res A. 2014;102(2):455-469. doi: 10.1002/jbm.a.34722.
  60. Park J.W., Ko H.J., Jang J.H., Kang H., Suh J.Y. Increased new bone formation with a surface magnesium-incorporated deproteinized porcine bone substitute in rabbit calvarial defects. J Biomed Mater Res A. 2012;100(4):834-840. doi: 10.1002/jbm.a.34017.
  61. Oryan A., Kamali A., Moshiri A., Baharvand H., Daemi H. Chemical crosslinking of biopolymeric scaffolds: current knowledge and future directions of crosslinked engineered bone scaffolds. Int J Biol Macromol. 2018;107 (Pt A):678-688. doi: 10.1016/j.ijbiomac.2017.08.184.
  62. Antunes A.A., Grossi-Oliveira G.A., Martins-Neto E.C., Almeida A.L., Salata L.A. Treatment of circumferential defects with osseoconductive xenografts of different porosities: a histological, histometric, resonance frequency analysis, and micro-CT study in dogs. Clin Implant Dent Relat Res. 2015;17 Suppl 1:e202-20. doi: 10.1111/cid.12181.
  63. Paulo M.J.E., Dos Santos M.A., Cimatti B., Gava N.F., Riberto M., Engel E.E. Osteointegration of porous absorbable bone substitutes: A systematic review of the literature. Clinics (Sao Paulo). 2017;72(7):449-453. doi: 10.6061/clinics/2017(07)10.
  64. Go A., Kim S.E., Shim K.M., Lee S.M., Choi S.H., Son J.S., Kang S.S. Osteogenic effect of low-temperatureheated porcine bone particles in a rat calvarial defect model. J Biomed Mater Res A. 2014;102(10):3609-3617. doi: 10.1002/jbm.a.35022.
  65. Lei P., Sun R., Wang L., Zhou J., Wan L., Zhou T., Hu Y. A new method for xenogeneic bone graft deproteinization: comparative study of radius defects in a rabbit model. PLoS One. 2015;10(12):e0146005. doi: 10.1371/journal.pone.0146005.
  66. Смоленцев Д.В., Гурин М.В., Венедиктов А.А., Евдокимов С.В., Фадеев Р.А. Экстракционная очистка ксеногенного костного матрикса в среде сверхкритического диоксида углерода и оценка свойств полученного материала. Сверхкритические флюиды. Теория и практика. 2017;12(2):60-67.
  67. Meng S., Zhang X., Xu M., Heng B.C., Dai X., Mo X. et al. Effects of deer age on the physicochemical properties of deproteinized antler cancellous bone: an approach to optimize osteoconductivity of bone graft. Biomed Mater. 2015;10(3):035006. doi: 10.1088/1748-6041/10/3/035006.
  68. Накоскин А.Н., Ковинька М.А., Талашова И.А., Тушина Н.В., Лунева С.Н. Биохимические маркеры остеогенеза и воспаления в сыворотке крови при ксеноимплантации. Медицинский вестник Северного Кавказа. 2018;13(1):82-85. doi: 10.14300/mnnc.2018.13023.
  69. Bigham-Sadegh A., Oryan A. Basic concepts r ing fracture healing and the current options and future directions in managing bone fractures. Int Wound J. 2015;12(3):238-247. doi: 10.1111/iwj.12231.
  70. Calori G.M., Mazza E., Colombo M., Ripamonti C. The use of bone-graft substitutes in large bone defects: any specific needs? Injury. 2011;42 Suppl 2:S56-63. doi: 10.1016/j.injury.2011.06.011.
  71. Keskin D., Gundoğdu C., Atac A.C. Experimental c ison of bovine-derived xenograft, xenograft-autologous bone marrow and autogenous bone graft for the treatment of bony defects in the rabbit ulna. Med Princ Pract. 2007;16(4):299-305. doi: 10.1159/000102153.
  72. Voor M.J., Yoder E.M., Burden R.L.Jr. Xenograft bone inclusion improves incorporation of hydroxyapatite cement into cancellous defects. J Orthop Trauma. 2011; 25(8):483-487. doi: 10.1097/BOT.0b013e318224a3c2.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 82474 от 10.12.2021.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies