Stimulation of Osteogenesis by Direct Electric Current (Review)

Cover Page

Abstract

Background. Stimulation of osteogenesis in the treatment of certain orthopedic and trauma pathologies is a necessary element to ensure the best clinical outcome. The purpose of the present analytical review is to analyze the literature data in respect of evaluating the approaches and possibilities to stimulate osteogenesis using direct current. Methods. The search for literature data was performed in the open electronic databases of scientific literature PubMed and eLIBRARY under the following keywords and their combinations: “osteogenesis”, “reparative osteogenesis”, “direct electric current”, “orthopaedics”, “traumatology”, “electric current” (in Russian as well as in English language ). Results. According to some fundamental research, the stimulating effect of direct current lies is both in stimulating differentiation and proliferation of osteoblasts, and in stimulating differentiation of stem cells, mainly mesenchymal stem cells of bone marrow and adipose tissue, in the process of osteogenesis. The following stimulating technologies were developed and clinically tested to date: 1 — direct exposure of bone to the direct current; 2 — capacitive coupled stimulation; and 3 — inductive coupled (electromagnetic) stimulation. Analysis of clinical practice demonstrated that the first technology is most effective in terms of osteoreparation, but less safe than technology 2 and 3. It should be noted that there are no clear indications and modes of application for the abovementioned methods. Based on the data collected in the present analysis, technology 1 is considered by authors as the most promising. Safety of technology 1 can be enhanced by application of metal implants as electrodes in case those are planned to be used for medical reasons: wires, rods, staples, fixators, etc. Conclusion. Use of electric current to stimulate bone formation is a promising method which requires clarification in respect of indications and application modes.

About the authors

E. N. Ovchinnikov

Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics

Author for correspondence.
Email: omu00@list.ru

Cand. Sci. (Biol.), Academic Secretary

Kurgan

Russian Federation

M. V. Stogov

Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics

Email: fake@neicon.ru

Dr. Sci. (Biol.), Associate Professor, Leading Researcher

Kurgan

Russian Federation

References

  1. Buza J.A. 3rd, Einhorn T. Bone healing in 2016. Clin Cases Miner Bone Metab. 2016;13(2):101-105. doi: 10.11138/ccmbm/2016.13.2.101.
  2. Kostenuik P., Mirza F.M. Fracture healing physiology and the quest for therapies for delayed healing and nonunion. J Orthop Res. 2017;35(2):213-223. doi: 10.1002/jor.23460.
  3. Lewallen E.A., Riester S.M., Bonin C.A., Kremers H.M., Dudakovic A., Kakar S. et al. Biological strategies for improved osseointegration and osteoinduction of porous metal orthopedic implants. Tissue Eng Part B Rev. 2015;21(2):218-230. doi: 10.1089/ten.TEB.2014.0333.
  4. Gubin A.V., Borzunov D.Y., Malkova T.A. The Ilizarov paradigm: thirty years with the Ilizarov method, current concerns and future research. Int Orthop. 2013;37(8):1533-1539. doi: 10.1007/s00264-013-1935-0.
  5. Jauregui J.J., Ventimiglia A.V., Grieco P.W., Frumberg D.B., Herzenberg J.E. Regenerate bone stimulation following limb lengthening: a metaanalysis. BMC Musculoskelet Disord. 2016;17(1):407. doi: 10.1186/s12891-016-1259-5.
  6. Moraal J.M., Elzinga-Plomp A., Jongmans M.J., Roermund P.M., Flikweert P.E., Castelein R.M., Sinnema G. Long-term psychosocial functioning after Ilizarov limb lengthening during childhood. Acta Orthop. 2009;80(6):704-710. doi: 10.3109/17453670903473024.
  7. Hosny G.A. Humeral lengthening and deformity correction. J Child Orthop. 2016;10(6):585-592. doi: 10.1007/s11832-016-0789-6.
  8. Alzahrani M.M., Anam E.A., Makhdom A.M., Villemure I., Hamdy R.C. The effect of altering the mechanical loading environment on the expression of bone regenerating molecules in cases of distraction osteogenesis. Front Endocrinol (Lausanne). 2014;5:214. doi: 10.3389/fendo.2014.00214. eCollection 2014.
  9. Khalifeh J.M., Zohny Z., MacEwan M., Stephen M., Johnston W., Gamble P., Zeng Y., Yan Y., Ray W.Z. Electrical stimulation and bone healing: a review of current technology and clinical applications. IEEE Rev Biomed Eng. 2018;11:217-232. doi: 10.1109/RBME.2018.2799189.
  10. F errier J., Ross S.M., Kanehisa J., Aubin J.E. Osteoclasts and osteoblasts migrate in opposite directions in response to a constant electrical field. J Cell Physiol. 1986;129(3):283-288. doi: 10.1002/jcp.1041290303.
  11. Kumar A., Nune K.C., Misra R.D. Electric field-mediated growth of osteoblasts — the significant impact of dynamic flow of medium. Biomater Sci. 2016;4(1):136-144. doi: 10.1039/c5bm00350d.
  12. Thrivikraman G., Boda S.K., Basu B. Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective. Biomaterials. 2018;150:60-86. doi: 10.1016/j.biomaterials.2017.10.003.
  13. Bodhak S., Bose S., Kinsel W.C., Bandyopadhyay A. Investigation of in vitro bone cell adhesion and proliferation on ti using direct current stimulation. Mater Sci Eng C Mater Biol Appl. 2012;32(8):2163-2168. doi: 10.1016/j.msec.2012.05.032.
  14. Eischen-Loges M., Oliveira K.M.C., Bhavsar M.B., Barker J.H., Leppik L. Pretreating mesenchymal stem cells with electrical stimulation causes sustained longlasting pro-osteogenic effects. Peer J. 2018;6:e4959. doi: 10.7717/peerj.4959.
  15. Wang X., Gao Y., Shi H., Liu N., Zhang W., Li H. Influence of the intensity and loading time of direct current electric field on the directional migration of rat bone marrow mesenchymal stem cells. Front Med. 2016;10(3):286-296. doi: 10.1007/s11684-016-0456-9.
  16. Mobini S., Leppik L., Thottakkattumana Parameswaran V., Barker J.H. In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells. Peer J. 2017;5:e2821. doi: 10.7717/peerj.2821.
  17. Hu W.W., Hsu Y.T., Cheng Y.C., Li C., Ruaan R.C., Chien C.C., Chung C.A., Tsao C.W. Electrical stimulation to promote osteogenesis using conductive polypyrrole films. Mater Sci Eng C Mater Biol Appl. 2014;37:28-36. doi: 10.1016/j.msec.2013.12.019.
  18. Zhang J., Li M., Kang E.T., Neoh K.G. Electrical stimulation of adipose-derived mesenchymal stem cells in conductive scaffolds and the roles of voltagegated ion channels. Acta Biomater. 2016;32:46-56. doi: 10.1016/j.actbio.2015.12.024.
  19. Griffin M., Bayat A. Electrical stimulation in bone healing: critical analysis by evaluating levels of evidence. Eplasty. 2011;11:e34.
  20. Kuzyk P.R., Schemitsch E.H. The science of electrical stimulation therapy for fracture healing. Indian J Orthop. 2009;43(2):127-131. doi: 10.4103/0019-5413.50846.
  21. Anglen J. The clinical use of bone stimulators. J South Orthop Assoc. 2003;12(2):46-54.
  22. Beck B.R., Matheson G.O., Bergman G., Norling T., Fredericson M., Hoffman A.R., Marcus R. Do capacitively coupled electric fields accelerate tibial stress fracture healing? A randomized controlled trial. Am J Sports Med. 2008;36(3):545-553. doi: 10.1177/0363546507310076.
  23. Nelson F.R., Brighton C.T., Ryaby J., Simon B.J., Nielson J.H., Lorich D.G. et al. Use of physical forces in bone healing. J Am Acad Orthop Surg. 2003;11(5):344-354.
  24. Zhu S., Jing W., Hu X., Huang Z., Cai Q., Ao Y., Yang X. Time-dependent effect of electrical stimulation on osteogenic differentiation of bone mesenchymal stromal cells cultured on conductive nanofibers. J Biomed Mater Res A. 2017;105(12):3369-3383. doi: 10.1002/jbm.a.36181.
  25. Snyder M.J., Wilensky J.A., Fortin J.D. Current applications of electrotherapeutics in collagen healing. Pain Physician. 2002;5(2):172-181.
  26. Gan J.C., Glazer P.A. Electrical stimulation therapies for spinal fusions: current concepts. Eur Spine J. 2006;15(9):1301-1311. doi: 10.1007/s00586-006-0087-y.
  27. Griffin X.L., Costa M.L., Parsons N., Smith N. Electromagnetic field stimulation for treating delayed union or non-union of long bone fractures in adults. Cochrane Database Syst Rev. 2011;(4):CD008471. doi: 10.1002/14651858.CD008471.pub2.
  28. Dodge G.R., Bowen J.R., Oh C.W., Tokmakova K., Simon B.J., Aroojis A., Potter K. Electrical stimulation of the growth plate: a potential approach to an epiphysiodesis. Bioelectromagnetics. 2007;28(6):463-470. doi: 10.1002/bem.20329.
  29. Leppik L., Zhihua H., Mobini S., Thottakkattumana Parameswaran V., Eischen-Loges M., Slavici A. et al. Combining electrical stimulation and tissue engineering to treat large bone defects in a rat model. Sci Rep. 2018;8(1):6307. doi: 10.1038/s41598-018-24892-0.
  30. Волков Е.Е., Решетняк В.К., Домарацкая Е.И., Волков А.Е., Кучеряну В.Г., Буторина Н.Н., Паюшина О.В. Влияние низкочастотной электростимуляции на регенерацию костной ткани. Патологическая физиология и экспериментальная терапия. 2015;59(3): 94-99. doi: 10.25557/0031-2991.2015.03.94-99.
  31. Modarresi J., Aghili H., Karandish M., Jalali B., Zahir S.T. Effect of direct electric current on parietal bone osteogenesis. J Craniofac Surg. 2012;23(6):1607-1609. doi: 10.1097/SCS.0b013e3182575423.
  32. Курышев Д.А., Шеин В.Н. Оценка ближайших результатов непрямой остеопластики в лечении кист костей у детей. Детская хирургия. 2011;(5):32-34.
  33. Goldstein C., Sprague S., Petrisor B.A. Electrical stimulation for fracture healing: current evidence. J Orthop Trauma. 2010;24:S62-S65. doi: 10.1097/BOT.0b013e3181cdde1b.
  34. Pickering S.A., Scammell B.E. Electromagnetic fields for bone healing. Int J Low Extrem Wounds. 2002;1(3):152-160. doi: 10.1177/153473460200100302.
  35. Saxena A., Di Domenico L.A., Widtfeldt A., Adams T., Kim W. Implantable electrical bone stimulation for arthrodeses of the foot and ankle in high-risk patients: a multicenter study. J Foot Ankle Surg. 2005;44(6):450-454. doi: 10.1053/j.jfas.2005.07.018.
  36. Hughes M.S., Anglen J.O. The use of implantable bone stimulators in nonunion treatment. Orthopedics. 2010;33(3). doi: 10.3928/01477447-20100129-15.
  37. Szewczenko J., Marciniak J. The influence of electrostimulation with the use of direct and alternating current on the corrosion of Cr-Ni-Mo steel implants. Ortop Traumatol Rehabil. 2000;2(3):58-62.
  38. Dergin G., Akta M., Gürsoy B., Devecioglu Y., Kürkçü M., Benlidayi E. Direct current electric stimulation in implant osseointegration: an experimental animal study with sheep. J Oral Implantol. 2013;39(6):671-679. doi: 10.1563/AA ID-JO I-D-10-00172.
  39. Vanegas-Acosta J.C., Garzón-Alvarado D.A., Lancellotti V. Numerical simulation of electrically stimulated osteogenesis in dental implants. Bioelectrochemistry. 2014;96:21-36. doi: 10.1016/j.bioelechem.2013.12.001.
  40. Inan M., Alat I., Gurses I., Kekilli E., Kutlu R., Eskin A. et al. Induced angiogenesis with intramedullary direct current: experimental research. Am J Physiol Heart Circ Physiol. 2005;288(2):H705-709. doi: 10.1152/ajpheart.01222.2003.
  41. Isaacson B.M., Brunker L.B., Brown A.A., Beck J.P., Burns G.L., Bloebaum R.D. An evaluation of electrical stimulation for improving periprosthetic attachment. J Biomed Mater Res B Appl Biomater. 2011;97(1):190-200. doi: 10.1002/jbm.b.31803.
  42. Yonemori K., Matsunaga S., Ishidou Y., Maeda S., Yoshida H. Early effects of electrical stimulation on osteogenesis. Bone. 1996;19(2):173-180.
  43. Schmidt-Malan S.M., Brinkman C.L., Greenwood-Quaintance K.E., Karau M.J., Mandrekar J.N., Patel R. Activity of electrical current in experimental propionibacterium acnes foreign-body osteomyelitis. Antimicrob Agents Chemother. 2017;61(2):e01863-16. doi: 10.1128/AAC .01863-16.
  44. Schmidt-Malan S.M., Brinkman C.L., Greenwood-Quaintance K.E., Karau M.J., Mandrekar J.N., Patel R. Activity of fixed direct electrical current in experimental Staphylococcus aureus foreign-body osteomyelitis. Diagn Microbiol Infect Dis. 2019;93(2):92-95. doi: 10.1016/j.diagmicrobio.2018.09.006.
  45. Доброродный Е.В. Нераскрытые возможности аппарата Илизарова. Известия ЮФУ. Технические науки. 2008;82(5):84-87.
  46. Ceballos A., Pereda O., Ortega R., Balmaseda R. Electrically-induced osteogenesis in external fixation treatment. Acta Orthop Belg. 1991;57(2): 102-108.
  47. El-Hakim I.E., Azim A.M., El-Hassan M.F., Maree S.M. Preliminary investigation into the effects of electrical stimulation on mandibular distraction osteogenesis in goats. Int J Oral Maxillofac Surg. 2004;33(1):42-47. doi: 10.1054/ijom.2003.0445.
  48. Hagiwara T., Bell W.H. Effect of electrical stimulation on mandibular distraction osteogenesis. J Craniomaxillofac Surg. 2000;28(1):12-19. doi: 10.1054/jcms.1999.0104.
  49. Peña-Martínez V., Lara-Arias J., Vilchez-Cavazos F., Álvarez-Lozano E., Montes de Oca-Luna R., Mendoza-Lemus Ó. [Interosseous electrostimulation in a model of lengthening with external fixation]. Cir Cir. 2017;85(2):127-134. (In Spanish). doi: 10.1016/j.circir.2016.07.001.

Statistics

Views

Abstract: 403

Cited-by

CrossRef: 1

  1. Emelianov VY, Preobrazhenskaia EV, Nikolaev NS. Evaluating the Effectiveness of Biophysical Methods of Osteogenesis Stimulation: Review. Traumatology and Orthopedics of Russia. 2021;27(1):86. doi: 10.21823/2311-2905-2021-27-1-86-96

Dimensions

Article Metrics

Metrics Loading ...

PlumX


Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies