Mathematical Modeling of the “Bone-Fixator” System during the Treatment of Intertrochanteric Fractures

Abstract

Relevance — the need for an objective justification in choosing the type of fixation in the treatment patients with pertrochanteric hip fractures.

Objective — to study the changes in the properties of a consolidating trochanteric fracture fixed by a dynamic cephalomedullary nail when subjected to cyclic dynamic loads.

Materials and methods. A mathematical model was developed for trochanteric fracture of the femur (A1 according to AO classification) when fixed with a dynamic cephalomedullary nail. Then, the properties of the system were studied (pressure between fragments, mechanical stress in the bone and fixation device, displacement amplitude, neck-diaphysis angle) under a virtual load of a 80 kg body at various amount of insertion of the dynamic screw (from 10 mm to 0 mm).

Results. In the process of shortening the femoral neck axis by 1 cm, the stability of the ‘bone-metal fixation device’ system increases, as indicated by a decrease in the maximum amplitude of displacements in the system under load by 16.8%, a decrease in the maximum stress in the fixation elements by 20.2%, a decrease in pressure at the site of contact of fragments by 19.8%. In addition, there was a decrease in the neck-diaphysis angle by 2.8%.

Conclusion. The mathematical modeling of the ‘bone-metal fixation device’ system simulating conditions of dynamic osteosynthesis showed that there is a potential increase in the stability of the cephalomedullary system and that favorable conditions are created for the consolidation of the fracture when subjected to cyclic load of body mass.

About the authors

V. E. Dubrov

Lomonosov Moscow State University

Email: fake@neicon.ru

Vadim E. Dubrov — Dr. Sci. (Med.), professor, chairman, Department of General and Specialized Surgery, School of Medicine

Russian Federation

I. M. Shcherbakov

Lomonosov Moscow State University

Author for correspondence.
Email: imscherbackov@yandex.ru

Ivan M. Shcherbakov — PhD student, Department of General and Specialized Surgery, School of Medicine

Russian Federation

K. A. Saprykina

Lomonosov Moscow State University

Email: fake@neicon.ru

Kseniya A. Saprykina — PhD student, Department of General and Specialized Surgery, School of Medicine

Russian Federation

I. A. Kuzkin

Hexa, LLC

Email: fake@neicon.ru

Ivan A. Kuz’kin — principal engineer.

Moscow Russian Federation

D. A. Zyuzin

Lomonosov Moscow State University

Email: fake@neicon.ru

Dmitrii A. Zyuzin — PhD student, Department of General and Specialized Surgery, School of Medicine

Russian Federation

D. V. Yashin

Lomonosov Moscow State University

Email: fake@neicon.ru

Dmitrii V. Yashin — resident, Department of General and Specialized Surgery, School of Medicine

Russian Federation

References

  1. Dyer S.M., Crotty M., Fairhall N., Magaziner J., Beaupre L.A., Cameron I.D., Sherrington C. A Critical review of the long-term disability outcomes following hip fracture. BMC Geriatr. 2016;2(16):158. doi: 10.1186/s12877-016-0332-0.
  2. World Health Organization: WHO Global report on falls Prevention in older Age. 2007. Available from: https://extranet.who.int/agefriendlyworld/wp-content/up-loads/2014/06/who-Global-report-on-falls-prevention-in-older-age.pdf.
  3. Bonnaire F., Weber A., Bosl O., Eckhardt C., Schwieger K., Linke B. [«Cutting out» in pertrochanteric fractures - problem of osteoporosis?] Unfallchirurg. 2007;110(5):425-432. (In German). doi: 10.1007/s00113-007-1248-0.
  4. Windolf J., Hollander D.A., Hakimi M., Linhart W. Pitfalls and complications in the use of the proximal femoral nail. Langenbecks Arch Surg. 2005;390(1):59-65. doi: 10.1007/s00423-004-0466-y.
  5. Kawatani Y., Nishida K., Anraku Y., Kunitake K., Tsutsumi Y. Clinical results of trochanteric fractures treated with the TARGON® proximal femur intramedullary nailing fixation system. Injury. 2011;42(4):22-27. DOI: 0.1016/S0020-1383(11)70008-0.
  6. Muller M.E., Allgower M., Schneider R., Willenegger H. Manual of Internal Fixation. Techniques Recommended by the AO Group, Ed. 3. New-York: Springer, 1991. 282-299.
  7. Evans E.M. The treatment of trochanteric fractures of the femur. J Bone Joint Surg Br. 1949;31(2):190-203.
  8. Anez-Bustillos L., Derikx L.C., Verdonschot N., Calderon N., Zurakowski D., Snyder B.D. et al. Finite element analysis and ct-based structural rigidity analysis to assess failure load in bones with simulated lytic defects. Bone. 2014;58:160-167. doi: 10.1016/j.bone.2013.10.009.
  9. Noor S., Pridham C., Fawcett T., Barclay M., Feng Y.T., Hassan O., Pallister I. Finite element analysis modelling of proximal femoral fractures, including post-fixation periprosthetic fractures. Injury. 2013;44(6):791-795. doi: 10.1016/j.injury.2012.10.023.
  10. Goffin J.M., Pankaj P., Simpson A.H. Are plasticity models required to predict relative risk of lag screw cut-out in finite element models of trochanteric fracture fixation? J Biomech. 2014;47(1):323-328. doi: 10.1016/j.jbiomech.2013.09.014.
  11. Ali A.A., cristofolini L., Schileo E., Hu H., Taddei F., Kim R.H. et al. Specimen-specific modeling of hip fracture pattern and repair. J Biomech. 2014;47(2):536-543. doi: 10.1016/j.jbiomech.2013.10.033.
  12. Eberle S., Gerber C., von Oldenburg G., Hungerer S. , Augat P. Type of hip fracture determines load share in intramedullary osteosynthesis. Clin Orthop Relat Res. 2009;467(8):1972-1980. doi: 10.1007/s11999-009-0800-3.
  13. Hambli R., Allaoui S. A robust 3D finite element simulation of human proximal femur progressive fracture under stance load with experimental validation. Ann Biomed Eng. 2013;41(12):2515-2527. doi: 10.1007/s10439-013-0864-9.
  14. Helwig P., Faust G., Hindenlang U., Kroplin B., Eingartner C. Finite element analysis of a bone-implant system with the proximal femur nail. Technol Health Care. 2006;14 (4-5):411-419. doi: 10.1016/S0021-9290(06)84862-1.
  15. Koivumaki J.E., Thevenot J., Pulkkinen P., Kuhn V., Link T. M., Eckstein F., Jamsa T. CT-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Bone. 2012;50(4):824-829. doi: 10.1016/j.bone.2012.01.012.
  16. Hambli R. A quasi-brittle continuum damage finite element model of the human proximal femur based on element deletion. Med Biol Eng Comput. 2013;51 (1-2):219-31. doi: 10.1007/s11517-012-0986-5.
  17. Верховод А.Ю., Иванов Д.В. Применение метода конечных элементов для сравнительной оценки стабильности остеосинтеза оскольчатых диафи-зарных переломов костей голени блокируемыми интрамедуллярными стержнями и аппаратами наружной фиксации. Современные проблемы науки и образования. 2012;(4). Режим доступа: https://science-education.ru/ru/article/view?Id=6905.
  18. Канзюба А.И., Филиппенко В.А. Конечно-элементное моделирование остеосинтеза при переломах вертлужной впадины. Травма. 2003;4(4):417-423.
  19. Aspenberg Р., Sandberg O. Distal radial fractures heal by direct woven bone formation. Acta Orthop. 2013; 84(3):297-300. doi: 10.3109/17453674.2013.792769.
  20. Van den Munckhof S., Zadpoor A.A. How accurately can we predict the fracture load of the proximal femur using finite element models? Clinbiomech (Bristol, Avon). 2014; 29(4):373-380. doi: 10.1016/j.clinbiomech.2013.12.018.
  21. Mahaisavariya B., Chantarapanich N., Riansuwan K., Sitthiseripratip K. Prevention of excessive medialisation of trochanteric fracture by a buttress screw: a novel method and finite element analysis. J Med Assoc Thai. 2014;97(Suppl 9):127-132.
  22. Shih K.S., Hsu C.C., Hsu T.P. A biomechanical investigation of the effects of static fixation and dynamization after interlocking femoral nailing: a finite element study. J Trauma Acute Care Surg. 2012;72(2): 46-53. doi: 10.1097/TA.0b013e3182244027.
  23. Ковалевская Д.В., Боблак О.Н., Яблоков С.В., Огрельченко Е.А., Овчинников И.А. компьютерные технологии для биомеханического анализа остеосинтеза переломов проксимального отдела бедра. Известияюфу. 2009;(9):98-102.
  24. Helwig P., Faust G., Hindenlang U., Hirschmuller A., Konstantinidis L., Bahrs C. Et al. Finite elemen analysis of four different implants inserted in different positions to stabilize an idealized trochanteric femoral fracture. Injury. 2009;40(3):288-295. doi: 10.1016/j.Injury.2008.08.016.
  25. Papini M., Zdero R., Schemitsch E.H., Zalzal P. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. J Biomech Eng. 2007;129(1):12-19. doi: 10.1115/1.2401178.
  26. Bowman K.F., Jr., Fox J., Sekiya J.K. A clinically relevant review of hip biomechanics. Arthroscopy. 2010;26(8): 1118-1129. doi: 10.1016/j.arthro.2010.01.027.
  27. Goffin J.M., Pankaj P., Simpson A.H. A computational study on the effect of fracture intrusion distance in three- and four-part trochanteric fractures treated with Gamma nail and sliding hip screw. J Orthop Res. 2014;32(1):39-45. doi: 10.1002/jor.22469.

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies