„Ischemic“ Distraction Regenerate: Interpretation, Definition, Problems and Solutions

Cover Page

Cite item


The purpose of the study was to define «ischemic» distraction regeneration which happens during the compromised course of distraction osteogenesis and to show the effectiveness of the mechanical action on such regenerates in patients with bone defects and pseudarthrosis.

Materials and methods. Seventeen patients with long bone defects (forearm and lower leg) were successfully treated. They had compromised distraction osteogenesis during the transosseous osteosynthesis stages and developed ischemic regenerates. The mean size of the defects relative to the contralateral segment in the forearm bones was 22.3% and 20% in patients with defects in the lower leg bones. Mechanical stimulation of compromised bone formation was used by means of compression and compaction of problematic distraction regenerates with two techniques. In group I, an additional osteotomy of the fragment under lengthening was performed. In group II, regenerates were compacted to the height of the regenerate connective tissue layer until its bony parts contacted. We used descriptive statistics methods.

Results. The process of bone tissue formation restored in all patients due to the mechanical impact on the zones of compromised distraction osteogenesis, and its complete organotypic remodeling followed.

Conclusion. Based on clinical and radiological signs of a compromised course of distraction osteogenesis, the notion of «ischemic regenerate» was defined and its manifestations were described. A retrospective analysis of the results of mechanical action on compromised distraction regenerates through compression and compaction without a change in the osteosynthesis technology shows its effectiveness.

About the authors

D. Yu. Borzunov

Russian Ilizarov Scientific Center «Restorative Traumatology and Orthopaedics»; Tyumen State Medical University

Author for correspondence.
Email: borzunov@bk.ru

Dmitry Yu. Borzunov — Dr. Sci. (Med.), deputy director for Scientific Work, Federal State Budgetary Institution, RISC «Restorative Traumatology and orthopaedics»; professor of the Department of Traumatology, orthopaedics and Military Surgery, TSMU.


Russian Federation

A. L. Shastov

Russian Ilizarov Scientific Center «Restorative Traumatology and Orthopaedics»

Email: fake@neicon.ru

Alexander L. Shastov — cand. Sci. (Med.), researcher, Scientific Laboratory of Purulent osteology.

Kurgan Russian Federation


  1. Green S.A., Jackson J.M., Wall D.M., Marinow H., Ishkanian J. Management of segmental defects by the Ilizarov intercalary bone transport method. Clin Orthop Relat Res. 1992;(280):136-142.
  2. Tsuchiya H., Tomita K. Distraction osteogenesis for treatment of bone loss in the lower extremity. J Orthop Sci. 2003;8(1):116-124. doi: 10.1007/s007760300020.
  3. Dumic-Cule I., Pecina M., Jelic M., Jankolija M., Popek I., Grgurevic L., Vukicevic S. Biological aspects of segmental bone defects management. Int Orthop. 2015;39(5):1005-1011. doi: 10.1007/s00264-015-2728-4.
  4. Azzam W., Atef a. Our experience in the management of segmental bone defects caused by gunshots. Int Orthop. 2016;40(2):233-238. doi: 10.1007/s00264-015-2870-z.
  5. Tetsworth K., Paley D., Sen C., Jaffe M., Maar D.C., Glatt V. Et al. Bone transport versus acute shortening for the management of infected tibial non-unions with bone defects. Injury. 2017;48(10):2276-2284. doi: 10.1016/j.injury.2017.07.018.
  6. Venkatesh K.P., Modi H.N., Devmurari K., Yoon J.Y., Anupama B.R., Song H.R. Femoral lengthening in achondroplasia: Magnitude of lengthening in relation to patterns of callus, stiffness of adjacent joints and fracture. J Bone Joint Surg Br. 2009;91(12):1в12-1617. doi: 10.1302/0301-620x.91B12.22418.
  7. Mishima K., Kitoh H., Iwata K., Matsushita M., Nishida Y., Hattori T., Ishiguro N. Clinical results and complications of lower limb lengthening for fibular hemimelia. Medicine (Baltimore). 2016;95(21):e3787. doi: 10.1097/MD.0000000000003787.
  8. Nakano-Matsuoka N., Fukiage K., Harada Y., Kashiwagi N., Futami T. The prevalence of the complications and their associated factors in humeral lengthening for achondroplasia: retrospective study of 54 cases. J Pediatr Orthop B. 2017;26(6):519-525. doi: 10.1097/BPB.0000000000000428.
  9. Konofaos P., Kashyap A., Ver Halen J. Biomedical approaches to improve bone healing in distraction osteogenesis: A current update and review. Biomed Tech (Berl). 2014;59(3):177-183. doi: 10.1515/bmt-2013-0096.
  10. Liodakis E., Kenawey M., Krettek C., Ettinger M., jagodzinski M., Hankemeier S. Segmental transports for posttraumatic lower extremity bone defects: are femoral bone transports safer than tibial? Arch Orthop Trauma Surg. 2011;131(2):229-234. doi: 10.1007/s00402-010-1129-9.
  11. Decoster T.A., Gehlert R.J., Mikola E.A., Pirela-cruz M.A. Management of posttraumatic segmental bone defects. J Am Acad Orthop Surg. 2004;12(1):28-38. doi: 10.5435/00124635-200401000-00005.
  12. Xu K., Fu x., Li Y.M., Wang C.G., Li Z.J. A treatment for large defects of the tibia caused by infected nonunion: Ilizarov method with bone segment extension. Ir J Med Sci. 2014;183(3):423-428. doi: 10.1007/s11845-013-1032-9.
  13. Borzunov D.Y. long bone reconstruction using multilevel lengthening of bone defect fragments. Int Orthop. 2012; 36(8):1695-1700. doi: 10.1007/s00264-012-1562-1.
  14. Ozaki T., Nakatsuka Y., Kunisada T., Kawai A., Dan’ura T., Naito N., Inoue H. High complication rate of reconstruction using Ilizarov bone transport method in patients with bone sarcomas. Arch Orthop Trauma Surg. 1998;118(3):136-139. doi: 10.1007/s004020050333.
  15. Rozbruch R.S., Weitzman A.M., Watson T.J., Freudigman P., Katz H.V., Ilizarov S. Simultaneous treatment of tibial bone and soft-tissue defects with the Ilizarov method. J Orthop Trauma. 2006;20(3):197-205.
  16. Aronson J. Ubytki kosci - aspekt biologiczny [Bone loss - biological aspect]. Aktualnosci ortopedyczne. 1995;1(3):148-156 (in Polish).
  17. Borzunov D.Y., Chevardin A.V. Ilizarov non-free bone plasty for extensive tibial defects. Int Orthop. 2013;37(4):709-714. doi: 10.1007/s00264-013-1799-3.
  18. Попков Д.А. Способ В.И. Шевцова - А.В. Попкова — новый этап развития дистракционно-компрессионного остеосинтеза. Гений ортопедии. 1997;(4):49-50.
  19. Aronson J. Temporal and spatial increases in blood flow during distraction osteogenesis. Clin Orthop Relat Res. 1994;(301):124-131.
  20. Li R., Saleh M., Yang L., Coulton L. Radiographic classification of osteogenesis during bone distraction. J Orthop Res. 2006;24(3):339-347. doi: 10.1002/jor.20026.
  21. Kojimoto H., Yasui N., Goto T., Matsuda S., Shimomura Y. Bone lengthening in rabbits by callus distraction. The role of periosteum and endosteum. J Bone Joint Surg Br. 1988;70(4):543-549.
  22. Isaac D., Fernandez H., Song H.R., Kim T.Y., Shyam A.K., Lee S.H., Lee J.C. Callus patterns in femur lengthening using a monolateral external fixator. Skeletal Radiol. 2008;37(4):329-334. doi: 10.1007/s00256-007-0406-3
  23. Emara K.M., Ghafar K.A., Al Kersh M.A. Methods to shorten the duration of an external fixator in the management of tibial infections. World J Orthop. 2011;2(9):85-92. doi: 10.5312/wjo.v2.i9.85.
  24. Aronson J. Basic science and biological principles of distraction osteogenesis. In: Rozbruch R.S., Ilizarova S. (eds.) Limb lengthening and reconstruction surgery. Informa : New York, 2007. Pp. 19-42.
  25. Choi I.H., Chung C.Y., Cho T.J., Yoo W.J. Angiogenesis and mineralization during distraction osteogenesis. J Korean Med Sci. 2002;17(4):435-447. doi: 10.3346/jkms.2002.17.4.435.
  26. Morgan E.F., Hussein A.I., Al-Awadhi B.A., Hogan D.E., Matsubara H., Al-Alq Z. Et al. Vascular development during distraction osteogenesis proceeds by sequential intramuscular arteriogenesis followed by intraosteal angiogenesis. Bone. 2012;51(3):535-45. doi: 10.1016/j.bone.2012.05.008.
  27. Kanczler J.M., Oreffo R.O. Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater. 2008; 15:100-114. doi: 10.22203/ecm.v015a08.
  28. Alzahrani M.M., Anam E.A., Makhdom A.M., Villemure I., Hamdy R.C. The effect of altering the mechanical loading environment on the expression of bone regenerating molecules in cases of distraction osteogenesis. Front Endocrinol (Lausanne). 2014;5:214. doi: 10.3389/fendo.2014.00214.
  29. Li R., Saleh M., Yang L., coulton L. Radiographic classification of osteogenesis during bone distraction. J Orthop Res. 2006;24(3):339-347. doi: 10.1002/jor.20026.
  30. Shyam A.K., Singh S.U., Modi H.N., Song H.-R., Lee S.-H., An H. Leg lengthening by distraction osteogenesis using the Ilizarov apparatus: A novel concept of tibia callus subsidence and its influencing factors. International orthopaedics. 2009;33(6):1753-1759. doi: 10.1007/s00264-008-0660-6.
  31. Zhu G.-H., Mei H.-B., He R.-G., liu K., Tang J., Wu J.-Y. Effect of distraction osteogenesis in patient with tibial shortening after initial union of congenital Pseudarthrosis of the Tibia (cpt): A preliminary study. BMC Musculoskeletal Disorders. 2015;16:216. doi: 10.1186/s12891-015-0680-5.

Copyright (c)

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 82474 от 10.12.2021.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies