Comparative Analysis of Pedicle Screw Placement in Children with Congenital Scoliosis: Freehand Technique (in vivo) and Guide Templates (in vitro)

Cover Page

Abstract

Objective. To evaluate accuracy between pedicle screw placement in vertebral bodies achieved in vivo with freehand techniques versus their placement in vertebrae plastic models achieved in vitro with the use of guide templates, in toddlers and preschool children with congenital kyphoscoliosis of the thoracolumbar transition and lumbar spine amid the vertebral malformation.

Material and Methods. The research is based on a retrospective analysis of the results of treatment of 10 patients with congenital kyphoscoliosis of the thoracolumbar transition and lumbar spine amid the vertebral malformation. Age – from 2 years 2 months to 6 years 8 months old (mean 3 years 8 months old), gender – 6 boys, 4 girls. Based on the postoperative multi-slice spiral computed tomography (MSCT) of the spine, the pedicle screws placement accuracy of the correcting multi-support metalwork was evaluated. These patients constituted the 1st research group (in vivo group). The 2nd research group (in vitro group) was formed from 27 vertebrae plastic models with pedicle screws inserted in them with the use of guide templates. The placement accuracy of the installed pedicle support elements was assessed based on the S.D. Gertzbein et al. scale (1990).

Results. In the 1st group, there were 52 pedicle screws placed. The screw placement accuracy according to the rate of misplacement, as follows: 53.8% in Grade 0, 25% in Grade I, 11.6% in Grade II, 9.6% in Grade III. The number of screws with the rate of misplacement in Grade 0 + Grade I was 41 (78.8%). In the 2nd group, there were 54 screws placed and slightly larger than the 1st group. The screw placement accuracy according to the rate of misplacement was 94.4% in Grade 0, 1.9% in Grade I, 3.7% in Grade II, respectively. The number of screws with the rate of misplacement in Grade 0 + Grade I was 52 (96.3%).

Conclusions. Comparative analysis showed that the number of pedicle screws successfully placed in vertebrae plastic models in children with congenital deformities of the thoracolumbar transition and lumbar spine achieved with the use of guide templates was significantly higher than the number of screws successfully placed with freehand techniques (96.3% versus 80.8%, p = 0.011). The results obtained with method of navigation templates in vitro showed high precision and accuracy of pedicle screw placement which gives the prospect for using this type of navigation in clinical practice in toddlers with congenital scoliosis. 

About the authors

D. N. Kokushin

Turner Scientific and Research Institute for Children’s Orthopedics

Author for correspondence.
Email: partgerm@yandex.ru

Dmitriy N. Kokushin — Cand. Sci. (Med.), senior research associate. Department of Spinal Pathology and Neurosurgery

St. Petersburg

Russian Federation

S. V. Vissarionov

Turner Scientific and Research Institute for Children’s Orthopedics

Email: fake@neicon.ru

Sergei V. Vissarionov — Dr. Sci. (Med.), professor, deputy director. Research and Academic Affairs, head of the Department of Spinal Pathology and Neurosurgery

St. Petersburg

Russian Federation

A. G. Baindurashvili

Turner Scientific and Research Institute for Children’s Orthopedics

Email: fake@neicon.ru

Alexei G. Baindurashvili — Dr. Sci. (Med.), professor, member of RAS, director Pathology and Neurosurgery

St. Petersburg

Russian Federation

A. V. Ovechkina

Turner Scientific and Research Institute for Children’s Orthopedics

Email: fake@neicon.ru

Alla V. Ovechkina — Cand. Sci. (Med.), associate professor. Scientific Secretary athology and Neurosurgery

St. Petersburg

Russian Federation

M. S. Poznovich

Turner Scientific and Research Institute for Children’s Orthopedics

Email: fake@neicon.ru

Makhmud S. Poznovich — research associate. Genetic Laboratory of the Center for Rare and Hereditary Diseases in Children 

St. Petersburg

 

Russian Federation

References

  1. Виссарионов С.В., Кокушин Д.Н., Картавенко К.А., Ефремов А.М. Хирургическое лечение детей с врожденной деформацией поясничного и пояснично- крестцового отделов позвоночюпса. Хирургия позвоночника. 2012;(3):33-37. doi: 10.14531/ss2012.3.33-37.
  2. Виссарионов C.B., Кокушин Д.Н., Белянчиков C.M., Мурашко В.В., Картавенко К.А. Оперативное лечение врожденной деформации грудопоясничного отдела позвоночника у детей. Ортопедия, травматология и восстановительная хирургия детского возраста. 2013;1(1):10-15. doi: 10.17816/PTORS1110-15.
  3. Михайловский M.B., Фомичев Н.Г. Хирургия деформаций позвоночника. Новосибирск, 2011.592 с.
  4. Рябых C.O., Губин A.B., Савин Д.М., Филатов Е.Ю. Результаты резекции полупозвонков грудного и поясничного отделов дорсальным педикулярным доступом у детей. Гений ортопедии. 2015;(4):42-47. doi: 10.18019/1028-4427-2015-4-42-47.
  5. Рябых C.O., Филатов Е.Ю., Савин Д.М. Результаты экстирпации полупозвонков комбинированным, дорсальным и педикулярным доступами: систематический обзор. Хирургия позвоночника. 2017;(1):14-23. doi: 10.14531/SS2017.1.14-23.
  6. Михайловский M.B., Новиков B.B., Васюра A.C., Удалова Н.Г. Оперативное лечение врожденных сколиозов у пациентов старше 10 лет. Хирургия позвоночника. 2015;12(4):42-48. D01: 10.14531/SS2015.4.42-48.
  7. Кулешов A.A., Лисянский И.Н., Ветрилэ M.C., Гаврюшенко Н.С., Фомин Л.В. Сравнительное экспериментальное исследование крючковой и транспедикулярной систем фиксации, применяемых при хирургическом лечении деформаций позвоночника. Вестник травматологии и ортопедии им. НН Приорова. 2012;(3):20-24.
  8. Губин A.B., Рябых C.O., Бурцев A.B. Ретроспективный анализ мальпозиции винтов после инструментальной коррекции деформаций грудного и поясничного отделов позвоночника. Хирургия позвоночника. 2015;12(1):8-13. doi: 10.14531/ss2015.1.8-13.
  9. Larson A.N., Polly D.W. Jr., Guidera K.J., Mielke C.H., Santos E.R., Ledonio C.G., Sembrano J.N. The accuracy of navigation and 3D image-guided placement for the placement of pedicle screws in congenital spine deformity. J Pediatr Orthop. 2012;32(6):23-29. doi: 10.1097/BPO.0b013e318263a39e.
  10. Lu S., Xu Y.Q., Lu W.W., Ni G.X., Li Y.B., Shi J.H., Li D.P., Chen G.P., Chen Y.B., ZhangY.Z. A novel patient- specific navigational template for cervical pedicle screw placement. Spine (Phila Pa 1976). 2009;34(26):E959-966. doi: 10.1097/BRS.0b013e3181c09985.
  11. Hu Y, Yuan Z.S., Spiker W.R., Dong W.X., Sun X.Y., Yuan J.B., Zhang J., Zhu B. A comparative study on the accuracy of pedicle screw placement assisted by personalized rapid prototyping template between pre- and post-operation in patients with relatively normal mid-upper thoracic spine. Eur Spine J. 2016;25(6): 1706-1715. doi: 10.1007/s00586-016-4540-2.
  12. Lu S., Xu Y.Q., Zhang Y.Z., Li Y.B., Xie L., Shi J.H., Guo H., Chen G.P., Chen Y.B. A novel computer-assisted drill guide template for lumbar pedicle screw placement: a cadaveric and clinical study. Int J Med Robot. 2009;5(2):184-191. doi: 10.1002/rcs.249.
  13. Putzier M., Strube P., Cecchinato R., Lamartina C., Hoff E.K. A new navigational tool for pedicle screw placement in patients with severe scoliosis: a pilot study to prove feasibility, accuracy, and identify operative challenges. Clin Spine Surg. 2017;30(4):E430-E439. doi: 10.1097/BSD.0000000000000220.
  14. Gertzbein S.D., Robbins S.E. Accuracy of pedicular screw placement in vivo. Spine (Phila Pa 1976). 1990; 15(1): 11-14.
  15. Кокушин Д.Н., Белянчиков C.M., Мурашко B.B., Картавенко К.А., Хусаинов Н.О. Сравнительный анализ корректности установки транспедикулярных винтов при хирургическом лечении детей с идиопатическим сколиозом Хирургия позвоночника. 2017;14(4):8-17. doi: 10.14531/ss2017.4.8-17.
  16. Виссарионов C.B. Анатомо-антропометрическое обоснование транспедикулярной фиксации у детей I,5-5 лет. Хирургия позвоночника. 2006;(3):19-23.
  17. Lu S., Xu Y.O., Chen G.P., ZhangY.Z., Lu D., Chen Y.B., Shi J.H., Xu X.M. Efficacy and accuracy of a novel rapid prototyping drill template for cervical pedicle screw placement. Comput Aided Surg. 2011;16(5):240-248. doi: 10.3109/10929088.2011.605173.
  18. Berry E., Cuppone M., Porada S., Millner P.A., Rao A., Chiverton N., Seedhom B.B. 2005. Personalised image-based templates for intra-operative guidance. Proc Inst Mech Eng H. 2005;219(2):111-118. doi: 10.1243/095441105X9273.
  19. Ryken T.C., Owen B.D., Christensen G.E., Reinhardt J. M. Image-based drill templates for cervical pedicle screw placement. / Neurosurg Spine. 2009; 10(1) :21-26. doi: 10.3171/2008.9.SPI08229.
  20. Bundoc R.C., Delgado G.G., Grozman S.A. A novel patient-specific drill guide template for pedicle screw insertion into the subaxial cervical spine utilizing stereolithographic modelling: an in vitro study. Asian Spine J. 2017;11(1):4-14. doi: 10.4184/asj.2017.11.1.4.
  21. Ma T., Xu Y.O., Cheng Y.B., Jiang M.Y., Xu X.M., Xie L., Lu S. A novel computer-assisted drill guide template for thoracic pedicle screw placement: a cadaveric study. Arch Orthop Trauma Surg. 2012;132(l):65-72. doi: 10.1007/S00402-011-1383-5.
  22. Chen H., Guo K., Yang H., Wu D., Yuan F. Thoracic pedicle screw placement guide plate produced by three-dimensional (3-D) laser printing. Med Sci Monit. 2016;22:1682-1686. doi: 10.12659/MSM.896148.
  23. Radermacher K., Portheine F., Anton M., Zimolong A., Kaspers G., Rau G., Staudte H.W. Computer assisted orthopaedic surgery with image based individual templates. Clin Orthop Relat Res. 1998;(354):28-38.
  24. Bimbaum K., Schkommodau E., Decker N., Prescher A., Klapper U., Radermacher K. Computer-assisted orthopaedic surgery with individual templates and comparison to conventional operation method. Spine (PhilaPa 1976). 2001;26(4):365-370.
  25. ShaoZ.X.,WangJ.S.,LinZ.K.,NiW.F.,WangX.Y.,WuA.M.. Improving the trajectory of transpedicular transdiscal lumbar screw fixation with a computer-assisted 3D-printed custom drill guide. Peer). 2017;5:e3564. doi: 10.7717/peerj.3564.
  26. Wang X., Shi J., Zlmng S., Zhang Z., Li X., Li Z. Pediatric lumbar pedicle screw placement using navigation templates: a cadaveric study. Indian J Orthop. 2017;51(4):468-473. doi: 10.4103/0019-5413.209955.
  27. Lamartina C., Cecchinato R., Fekete Z., Lipari A., Fiechter M., Berjano P. Pedicle screw placement accuracy in thoracic and lumbar spinal surgery with a patient-matched targeting guide: a cadaveric study. Eur Spine J. 2015; 24(Suppl 7):937-941. doi: 10.1007/s00586-0154261-y.
  28. Farshad M., Betz M., Farshad-Amacker N.A., Moser M. Accuracy of patient-specifc template-guided vs. free- handfuoroscopicallycontrolledpediclescrewplacement in the thoracic and lumbar spine: a randomized cadaveric study. Eur Spine /. 2017;26(3):738-749. doi: 10.1007/S00586-016-4728-5.
  29. Kawaguchi Y., Nakano M., Yasuda T., Seki S., Hori T., Kimura T. Development of a new technique for pedicle screw and Magerl screw insertion using a 3-dimensional image guide. Spine (Phila Pa 1976). 2012;37(23):1983- 1988. doi: 10.1097/BRS.0b013e31825ab547.
  30. Бурцев A.B., Павлова O.M., Рябых C.O., Губгш А.В. Комггыотерное ЗН-моделирование с изготовлением гшдивидуальных лекал для навигирования введения винтов в гпейном отделе позвоночника. Хирургия позвоночника. 2018;15(2):33-38. doi: 10.14531/SS2018.2.33-38
  31. Burtsev A.V., Pavlova О.М., Ryabykh S.O., Gubin A.V. [Computer 3d-modeUng of patient-specific navigational template for cervical screw insertion]. Hirurgia pozvonochnika [Journal of Spine Surgery]. 2018;15(2):33- 38. doi: 10.14531/SS2018.2.33-38. (InRuss.)
  32. Goffin J., Van Brussel K., Martens K., Vander Sloten J., Van Audekercke R., Smet M.H. Three-dimensional computed tomography-based, personalized drill guide for posterior cervical stabilization at Cl- C2. Spine (Phila Pa 1976). 2001;26(12):1343-1347. doi: 10.1097/00007632-200106150-00017.
  33. Lu S., Xu Y.O., Zhang Y.Z., Xie L., Guo H., Li D.P. A novel computer-assisted drill guide template for placement of C2 laminar screws. Eur Spine J. 2009;18(9):1379-1385. doi: 10.1007/S00586-009-1051-4.
  34. Kaneyama S., Sugawara T., Sumi M., Higashiyama N., Takabatake M., Mizoi K. A novel screw guiding method with a screw guide template system for posterior С-2 fixation: clinical article. / Neurosurg Spine. 2014;21(2):231-238. doi: 10.3171/2014.3.SPINE13730.
  35. Jiang L., Dong L., Tan M., Oi Y., Yang F., Yi P., Tang X. A modified personalized image-based drill guide template for atlantoaxial pedicle screw placement: a clinical study. Med Sci Monit. 2017;16(23): 1325-1333.
  36. Sugawara T., Higashiyama N., Kaneyama S., Sumi M. Accurate and simple screw insertion procedure with patient-specific screw guide templates for posterior Cl- C2 fixation. Spine (PhilaPa 1976). 2017;42(6):E340-E346. doi: 10.1097/BRS.0000000000001807.
  37. Kaneyama S., Sugawara T., Sumi M. Safe and accurate midcervical pedicle screw insertion procedure with the patient-specific screw guide template system. Spine (Phila Pa 1976). 2015;40(6):341-348. doi: 10.1097/BRS.0000000000000772.
  38. Lu S., Zhang Y.Z., Wang Z., Shi J.H., Chen Y.B., Xu X. M., Xu Y.O. Accuracy and efficacy of thoracic pedicle screws in scoUosis with patient-specific drill template. Med Biol Eng Comput 2012;50(7):751-758. doi: 10.1007/S11517-012-0900-1.
  39. Sugawara T., Higashiyama N., Kaneyama S., Takabatake M., Watanabe N., Uchida F., Sumi M., Mizoi K. Multistep pedicle screw insertion procedure with patient-specific lamina fit and-lock templates for the thoracic spine: clinical article. J Neurosurg Spine. 2013;19(2):185-190. doi: 10.3171/2013.4.SPINE121059.
  40. Takemoto M., Fujibayashi S., Ota E., Otsuki B., Kimura H., Sakamoto T., Kawai T., Futami T., Sasaki K., Matsushita T., Nakamura T., Neo M., Matsuda S. Additive-manufactured patient specific titanium templates for thoracic pedicle screw placement: novel designwithreduced contact area.E'MrSpme/. 2016,'25(6): 1698-1705. doi: 10.1007/s00586-015-3908-z.
  41. Pan Y, Lit G.H., Kuatig L., Wang B. Accuracy of thoracic pedicle screw placement in adolescent patients with severe spinal deformities: a retrospective study comparing drill guide template with free hand technique. Eur Spine J. 2018;27(2):319-326. doi: 10.1007/S00586-017-5410-2.
  42. Merc M., Drstvensek 1., Vogrin M., Brajlih T., Recnik G. A multi-level rapid prototyping drill guide template reduces the perforation risk of pedicle screw placement in the lumbar and sacral spine. Arch Orthop Trauma Surg. 2013;133(7):893-899. doi: 10.1007/S00402-013-1755-0.
  43. Azimifar F., Hassani K., Saveh A.H., Tabatabai Ghomshe F. A low invasiveness patient’s specific template for spine surgery. Proc Inst Mech Eng H. 2017;231(2):143-148. doi: 10.1177/0954411916682770.
  44. Liu K., ZhangQ., Li X., Zhao C., OuanX., Zhao R., Chen Z., Li Y.. Preliminary application of a multi-level 3D printing drill guide template forpedicle screw placement in severe and rigid scoliosis. Eur Spine J. 2017;26(6):1684-1689. doi: 10.1007/S00586-016-4926-1.

Statistics

Views

Abstract: 552

Cited-by

CrossRef: 2

  1. Snetkov AA, Gorbatyuk DS, Panteleyev AA, Eskin NA, Kolesov SV. Analysis of the 3D prototyping in the surgical correction of congenital kyphoscoliosis. Hirurgiâ pozvonočnika (Spine Surgery). 2020;17(1):42. doi: 10.14531/ss2020.1.42-53
  2. Kosulin AV, Elyakin DV, Kornievskiy LA, Darkovskaya AM, Bulatova IA, Pashko AA. Application of three-level navigation template in surgery for hemivertebrae in adolescents. Hirurgiâ pozvonočnika (Spine Surgery). 2020;17(1):54. doi: 10.14531/ss2020.1.54-60

Dimensions

Article Metrics

Metrics Loading ...

PlumX


Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies