Changes in the Structure and Mechanical Properties of the Bone after Puncture Cryoablation: Experimental Study

Cover Page

Abstract

Purpose of the study — to evaluate possible impact of cryoablation on a healthy bone and to identify probable causes of postoperative fractures.

Materials and Methods. The authors performed cryoablation of the femur in the experiment on 8 mature rabbits of Soviet Chinchilla (SC) breed with a follow up for up to two months. Anitrogenous cryoprobe of 1.5 mm in diameter was introduced into the femur through a perforation hole. The bone was completely frozen up to -180°С in two cycles with continuous thermometry. Pathomorfological examinations were performed after 7 and 55 days along with assessment of bone hardness. Preparation of material stipulated sawing the bone at the fracture site along the bone axis. One half-bone was used for histological examination, and another one — for measuring mechanical properties by local pressing of a diamond indenter onto the bone at certain applied force. The distance between measurement points along the bone was 250 μm. Statistical processing included variance significance analysis using t-test.

Results. The authors reported bone fractures at the site of cryodestruction in all animals in one week after the procedure. Statistical analysis of the measurements and histological examination demonstrated that freezing of the entire bone diameter up to -180°С results in its complete destruction. Strength reduction around the fracture site corresponded to the temperature distribution area in the range from -9ºС to -15ºС. However, areas of cooling below -40ºС exhibited some bone segments with normal hardness. Mosaic pattern of strength reduction is explained by microcirculation disorders. Histology confirmed thrombosis of intraosseous blood vessels in the area of cryotherapy. The first focal signs of osteomalacia emerged by the end of the first week after cryoablation. Subsequently, the bone preserved its regenerative properties, but by the end of the second month after the procedure the histogenesis was still not completed and the bone did not regain its strength.

Conclusion. The authors believe that a limited number of cases, the specific features of the angioarchitecture of animal bones and their ability to produce a heavy periosteal response do not allow to apply obtained quantitative outcomes of the present study to clinical situations. However, complete freezing of the entire bone diameter inevitably results in fracture formation.

About the authors

A. M. Belyaev

Petrov National Medical Research Center (Petrov’s Institute of Oncology)

Email: fake@neicon.ru

Alexey M. Belyaev — Dr. Sci. (Med.), professor, director

St. Petersburg

Russian Federation

G. G. Prokhorov

Petrov National Medical Research Center (Petrov’s Institute of Oncology)

Author for correspondence.
Email: gprokhorov@mail.ru

Georgiy G. Prokhorov — Dr. Sci. (Med.), professor, leading researcher, Department of General Oncology

St. Petersburg

Russian Federation

V. A. Sushnikov

Peter the Great St. Petersburg Polytechnic University

Email: fake@neicon.ru

Viktor A. Sushnikov — cand. Sci. (Tech.), associate professor

St. Petersburg

Russian Federation

A. S. Artemyeva

Petrov National Medical Research Center (Petrov’s Institute of Oncology)

Email: fake@neicon.ru

Anna S. Artemyeva — cand. Sci. (Med.), head of the Department of Pathomorphology

St. Petersburg Russian Federation

A. A. Arkhitskaya

Petrov National Medical Research Center (Petrov’s Institute of Oncology)

Email: fake@neicon.ru

Anna A. Arkhitskaya — PhD student

St. Petersburg

Russian Federation

D. A. Chuglova

Petrov National Medical Research Center (Petrov’s Institute of Oncology)

Email: fake@neicon.ru

Dina A. Chuglova — researcher, Department of Pathomorphology

St. Petersburg

Russian Federation

References

  1. Демичев Н.П., Дианов С.В. Профилактика рецидивирования доброкачественных опухолей костей методом криодеструкции. Вопросы онкологии. 2008;54(5):592-595.
  2. Дианов С.В., Халагуммаев К.М. Криовоздействие в хирургическом лечении доброкачественных опухолей костей стопы. Травматология и ортопедия России. 2010;(3):74-78. doi: 10.21823/2311-2905-2010-0-3-74-78.
  3. Marcove R.C., Miller T.R., Cahan W.C. The treatment of primary and metastaticbone tumors by repetitive freezing. Bull N Y Acad Med. 1968;44(5):532-544.
  4. Meller I., Weinbroum A. Bickels J., Dadia S., Nirkin A., Merimsky O. et al. 15 years of bone tumor cryosurgery: a single-centre experience of 440 procedures and long term foolow-up. Eur J Surg Oncol. 2008;34(8):921-927.
  5. Прохоров Г.Г., Беляев А.М., Прохоров Д.Г. Приборы для малоинвазивной пункционной криодеструкции. В кн.: Основы клинической криомедицины. СПб., 2017. P. 565-568. ISBN 978-5-519-50989-3.
  6. Pritsch T., Bickels J., Wu C.C., Squires H.M., Malawer M.M. The risk for fractures after curettage and cryosurgery around the knee. Clin Ortop Relat Res. 2007;458:159-167.
  7. Currey J.D. Three analogies to explain the mechanical properties of bone. Biorheology. 1964;2(1):1-10. doi: 10.3233/BIR-1964-2101.
  8. Аврунин А.С., Тихилов Р.М., Паршин Л.К., Мельников Б.Е., Шубняков И.И. Наноуровневый механизм жесткости и прочности кости. Травматология и ортопедия России. 2008;2(48);77-83.
  9. Zhmakin A.I. Fundamentals of cryobiology. Physical phenomena and mathematical models. Springer, 2008. 278 р.
  10. Marcove R.C., Weis L.D., Vaghaiwalla M.R., Pearson R., Huvos A.G. Cryosurgery in the treatment of giant cell tumors of bone. areport of 52 consecutive cases. Cancer. 1978;41(3):957-969.
  11. Veth R.P.H., Schreuder H.W.B., Geest I.C.M. Cryosurgery for bone tumors. Modern cryosurgery for cancer. World Sciences; 2012; 40:773-779. ISBN-13/978-981-4329-65-1.
  12. Gage A.A., Greene G.W., Neiders M.E., Emmings F.G. Freezing bone without excision. an experimental study of bone cell destruction and manner of regrowth in dogs. JAMA. 1966;196(9):770-774.
  13. Schargus G., Winckler J., Schröder F., Schöfer B. Cryosurgical devitalization of bone and its regeneration. an experimental study with animals. J Maxillofac Surg. 1975;3(2):128-131.
  14. Kuylenstierna R., Lundquist P.G., Nathanson A. Destruction and regeneration of jaw bone after cryogenic application. an experimental study. Ann Otol Rhinol Laryngol. 1980;89(6 Pt 1):582-589.
  15. Rabb J.M. Renaud M.L., Brandt P.A., Witt C.W. Effect of freezing and thawing on the microcirculation and capillary endothelium of the hamster cheek pouch. Cryobiologu. 1974;11(6):508-518.
  16. Kuylenstierna R., Lundquist P.G., Nathanson A. Early morphological changes in rabbit mandibule after cryogenic application. Arch Otorinolaryngol. 1980; 226(1-2):35-43.
  17. Fisher A.D., Williams D.F., Bradley P.F. The effect of cryosurgery on the strength of bone. Br J Oral Surg. 1978;15(3):215-222.
  18. Keijser L.C., Schreuder H.W., Boons H.W., Keulers B.J., Buma P., Huiskes R., Veth R.P. Bone grafting of cryosurgically treated bone defects: experiments in goats. Clin Orthop Relat Res. 2002;(396):215-222.
  19. Keijser L.C., Schreuder H.W., Buma P., Weinans H., Veth R.P. Cryosurgery in long bones: an experimental study of necrosis and revitalization in rabbits. Arch Orthop Trauma Surg. 1999,119(7-8):440-444.
  20. Popken F., Michael J.W., Zarghooni K., Sobottke R., Kasper H.U., Blaecker D. et al. Stability changes after cryosurgery in long tubular bones in correlation to histological results: an animal trail. Arch Orthop Trauma Surg. 2009;129(6):857-862. doi: 10.1007/s00402-008-0704-9.
  21. Беляев А.М., Г.Г. Прохоров. Криогенные технологии в онкологии. Вопросы онкологии. 2015;61(3):317-322. Belyaev a.M., Prokhorov G.G. [cryogenic technologies in oncology]. Voprosy onkologii. 2015;61(3):317-322. (In Russian).
  22. Callstrom M.R., Atwell T.D., Charboneau J.W., Farrell M.A., Goetz M.P., Rubin J. et al. Painful metastases involving bone: percutaneous image-guided cryoablation — Prospective Trail Interim analysis. Radiology. 2006;241(2):572-580 doi: 10.1148/radiol.2412051247.
  23. Prokhorov G.G., Gritsaenko A.E., Prokhorov D.G., Gasanov M.I., Klepikov V.V., Gurin A.V. et al. Aminimally invasive cryotherapeutic system. Biomedical Engineering. 2017;51(1):41-45. doi: 10.1007/s10527-017-9681-z.
  24. Xu Kecheng. Li Haibo, Mu Feng. Percutaneous cryoablation for treatment of painful bone metastases. Modern cryosurgery for cancer. World Sciences; 2012. pp. 801-815. ISBN-13/978-981-4329-65-1.
  25. Popken F., Meschede P., Erberich H., Koy T., Bosse M., Fischer J.H., Eysel P. Complication after cryosurgery with new miniature cryoprobes in long hollow bones: an animal trail. BMC Surg. 2005;5:17. doi: 10.1186/1471-2482-5-17.
  26. Granov A.M., Prokhorov D.G., Andreev A.P. et al. Temperature measuring and evaluation of tumor cell viability in different zones of an ice ball. Practical application of in vitro experimental results. In: Basics of cryosurgery. ed. by N. Korpan. Wien, New York: Springer, 2001. pp. 15-24. ISBN 3211837019.
  27. Brix G., Seebass V., Hellwig G., Griebel J. Estimation of heat transfer and temperature rise in partial-body regions during MR procedure: an analytical approach with respect to safety consideration. Magn Reson Imaging. 2002;20(1):65-76.
  28. Raydan M., Shubin N.A., Blinova M.I., Prokhorov G.G., Pinaev G.P. Stability of bone marrow stromal cells to low temperatures depending on degree of differentiation. Cell Tissue Biology. 2011;5(3):294-299.
  29. Шафранов В.В., Борхунова Е.Н., Цыганов Д.И., Торба А.И., Таганов А.В., Межов-Деглин Л.П., Калмыкова З.В., Подшивалова О.А. Современная концепция разрушения биологических тканей при локальной криодеструкции. Гуманитарный вестник. 2013;12(14):8. Режим доступа: http://hmbul.bmstu.ru/catalog/prmed/hidden/142.html.

Statistics

Views

Abstract: 314

Dimensions

Article Metrics

Metrics Loading ...

PlumX


Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies