Comment to the Article „Coatings Based on Two-Dimensionally Ordered Linear Chain Carbon for Protection of Titanium Implants from Microbial Colonization“

Cover Page

Abstract

.

About the authors

S. A. Bozhkova

Vreden Russian Research Institute of Traumatology and Orthopedics

Author for correspondence.
Email: fake@neicon.ru

Svetlana A. Bozhkova — Dr. Sci. (Med.), the head of Research Department of Prevention and Treatment of Wound Infection and Department of Clinical Pharmacology

St. Petersburg,

Russian Federation

References

  1. Gbejuade H.O., Lovering A.M., Webb J.C. The role of microbial biofilms in prosthetic joint infections. Acta Orthop. 2015;86(2):147-158. doi: 10.3109/17453674.2014.966290.
  2. Koseki H., Yonekura A., Shida T., Yoda I., Horiuchi H., Morinaga Y. et al. Early staphylococcal biofi lm formation on solid orthopaedic implant materials: in vitro study. PLoS ONE. 2014;9(10):e107588. doi: 10.1371/journal.pone.0107588.
  3. Frade J.P., Arthington-Skaggs B.A. Effect of serum and surface characteristics on candida albicans biofilm formation. Mycoses. 2011;54(4):e154-162. doi: 10.1111/j.1439-0507.2010.01862.x.
  4. Epstein A.K., Hochbaum A.I., Kim P., Aizenberg J. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry. Nanotechnology. 2011;22(49): 494007. doi: 10.1088/0957-4484/22/49/494007.
  5. Perera-Costa D., Bruque J.M., González-Martín M.L., Gómez-García A.C., Vadillo-Rodríguez V. Studying the influence of surface topography on bacterial adhesion using spatially organized microtopographic surface patterns. Langmuir. 2014;30(16):4633-4641. doi: 10.1021/la5001057.
  6. Braem A., Van Mellaert L., Mattheys T., Hofmans D., De Waelheyns E., Geris L., et al. Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications. J Biomed Mater Res A. 2014;102(1):215-224. doi: 10.1002/jbm.a.34688.
  7. Romano C.L., Scarponi S., Gallazzi E., Romano D., Drago L. Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J Orthop Surg Res. 2015;10:157. doi: 10.1186/s13018-015-0294-5.
  8. Brennan S.A., Ní Fhoghlú C., Devitt B.M., O’Mahony F.J., Brabazon D., Walsh A. Silver nanoparticles and their orthopaedic applications. Bone Joint J. 2015;97-B(5): 582-589. doi: 10.1302/0301-620x.97B5.33336.
  9. Aurore V., Caldana F., Blanchard M., Kharoubi Hess S., Lannes N., Mantel Py. et al. Silver-nanoparticles increase bactericidal activity and radical oxygen responses against bacterial pathogens in human osteoclasts. Nanomedicine. 2018;14(2):601-607. doi: 10.1016/j.nano.2017.11.006.
  10. Qin H., Cao H., Zhao Y., Zhu C., Cheng T., Wang Q. et al. In vitro and in vivo antibiofilm effects of silver nanoparticles immobilized on titanium. Biomaterials. 2014;35:9114-9125. doi: 10.1016/j.biomaterials.2014.07.040.
  11. Zhao Y., Cao H., Qin H., Cheng T., Qian S., Cheng M., et al. Balancing the osteogenic and antibacterial properties of titanium by codoping of Mg and ag: an in vitro and in vivo study. ACS Appl Mater Interfaces. 2015;7(32):17826-17836. doi: 10.1021/acsami.5b04168.

Statistics

Views

Abstract: 250

Dimensions

Article Metrics

Metrics Loading ...

PlumX


Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies