Orthopedic implant-associated infection: the main etiological agents, local resistance and antimicrobial therapy recommendations

Cover Page


Cite item

Full Text

Abstract

Surgical site infections remain a major complication of arthroplasty, spinal stabilization or other orthopedic surgeries. The pathogenesis of these complications is related to use orthopedic implants. This retrospective study investigated the microbiological etiology of implant-associated infection after orthopedic surgery over a 3-year period (2010-2012). The antibiotic resistance profiles of 1350 clinical microbial isolates were determined. The biofilm forming capacity of 394 staphylococcal strains was tested. Statistical analysis was performed using Z-criterion. From a results of the microbiological culture, Staphylococcus aureus and Staphylococcus epidermidis were isolated in 49,9% of cases, followed by: Enterococcus faecalis - 6,4%, Pseudomonas aeruginosa - 5,9%, Acinetobacter spp - 5,1% and members of the family Enterobacteriaceae - 4.1%. MRSA amounted to 23,9% and MRSE - 56,6% (p<0,05) . The percentage of strong biofilm forming strains was more among S.epidermidis strains compared to S. aureus strains (46,4 vs 37,3%; p<0,05). The strains of both Staphylococcus spp, isolated from tissue bioptates and removed orthopedic implants, possessed strong biofilm forming capacity more often than isolates from aspirates (p<0,05). The recommendations for empirical and etiotropic therapy of implant-associated infection after orthopedic surgeries were developed on the basis of data on antibiotic resistance of studied microorganisms.

About the authors

S. A. Bozhkova

Vreden Russian Research Institute for Traumatology and Orthopedics

Author for correspondence.
Email: clinpharm-rniito@yandex.ru
Russian Federation

R. M. Tikhilov

Vreden Russian Research Institute for Traumatology and Orthopedics; Mechnikov North-Western State Medical University

Email: info@rniito.org
Russian Federation

M. V. Krasnova

Vreden Russian Research Institute for Traumatology and Orthopedics

Email: m_kras@list.ru
Russian Federation

A. N. Rukina

Vreden Russian Research Institute for Traumatology and Orthopedics

Email: anrukina@rniito.ru
Russian Federation

References

  1. Божкова С.А., Тихилов Р.М., Краснова М.В., Тишина В.В., Полякова Е.М., Торопов С.С. Профиль резистентности возбудителей как основа выбора эффективного антибиотика для терапии стафилококковой инфекции протезированного сустава. Клин. Микробиол. Антимикроб. Химиотер. 2013; 15(2): 115-123.
  2. Дехнич А.В., Эдельштейн И.А., Нарезкина А.Д., Афиногенов Г.Е., Л.И. Ахметова, Боронина Л.Г., Гугуцидзе Е.Н., ГУДКова Л.В., Здзитовецкий Д.Э., Ильина В.Н., Кречикова О.И., Марусина Н.Е., Мултых И.Г., Пылаева С.И., Смирнов И.В., Суборова Т.Н., Тарабан В.К., Фурлетова Н.М.Хасанова С.Г., Щетинин Е.В., Страчунский Л.С. Эпидемиология антибиотикорезистентности нозокомиальных штаммов Staphylococcus aureus в России: результаты многоцентрового исследования. Клин. Микробиол. Антимикроб. Химиотер. 2002; 4 (4): 325-336.
  3. Решедько Г.К., Рябкова Е.Л., Фаращук А.Н, Сухорукова М.В., Шевченко О.В., Эйдельштейн М.В., Козлов Р.С., исследовательская группа РОСНЕТ Неферментирующие грамотрицательные возбудители нозокомиальных инфекций в ОРИТ России: проблемы антибиотикорезистентности. Клин. Микробиол. Антимикроб. Химиотер. 2006; 8(3): 243-259
  4. Сергиенко В.И., Бондарева И.Б. Математическая статистика в клинических исследованиях. М. : ГЭОТАР МЕДИЦИНА; 2000. C. 70-73.
  5. Сидоренко С.В., Яковлев С.В. Инфекции в интенсивной терапии. М.: Бионика. 2003; 208 с.
  6. Aboltins C.A., Page M.A., Buising K.L., Jenney A.W., Daffy JR, Choong PF, Stanley PA, Treatment of staphylococcal prosthetic joint infections with debridement, prosthesis retention and oral rifampicin and fusidic acid. Clin. Microbiol. Infect. 2007; 13: 586-591.
  7. Barberan J. Management of infections of osteoarticular prosthesis. Clin. Microbiol. Infect. 2006;12б Suppl. 3:93-101.
  8. Brady R.A., Calhoun J.H., Leid J.G., Shirtliff M.E. Infections of orthopaedic implants and devices. In: Shirtliff M.E. and Leid J.G. eds. Biofilms and devicerelated infections. NY: Springer, 2009. pp. 15-56.
  9. Christensen G.D., Simpson W.A., Younger J.J., Baddour L.M., Barrett F.F., Melton D.M., Beachey E.H Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 1985; 22: 996-1006.
  10. Deresinski S. Vancomycin in combination with other antibiotics for the treatment of serious methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis 2009; 49:1072-1079.
  11. Edgeworth J D., Treacher D.F., Eykyn S.J. A 25-year study of nosocomial bacteremia in adult intensive care unit. Crit. Care Med. 1999; 27: 1421-1428.
  12. Geipel U. Pathogenic organisms in hip joint infections. Int. J. Med. Sci. 2009; 6: 234-240.
  13. Gomes F., Leite B., Teixeira P., Oliveira R. Strategies to control Staphylococcus epidermidis biofilms. In Mendez-Vilas A. eds. Science against microbial pathogens: communicating current research and technological advances. FORMATEX, 2011. p: 843-852.
  14. Guggenbichler JP, Bonatti H, Rottensteiner F. Resistance of staphylococci to intracellular killing by macrophages - a new pathophysiologic concept of acute hematogenous osteomyelitis in childhood and its therapeutic consequences. Padiatr. Padol. 1989; 24: 21-32.
  15. Howden, B.P., Davies J.K., Johnson P.D.R., Stinear T.P, Grayson M.L. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev 2010; 3: 99-139.
  16. Martinez-Pastor J.C., Munoz-Mahamud E., Vilchez F., Garcia-Ramiro S., Bori G., Sierra J., Martinez J. A.; Font L., Mensa J., Soriano A. Outcome of acute prosthetic joint infections due to gram-negative bacilli treated with open debridement and retention of the prosthesis. Antimicrob. Agents Chemother. 2009; 53 (11): 4772-4777.
  17. Meißner A., Haag R., Rahmanzadeh R. Adjuvant fosfomycin medication in chronic osteomyelitis. Infection. 1989; 17:146-151.
  18. Moise-Broder P., Sakoulas G., Eliopoulos G.M., Schentag J.J., Forrest A., Moellering R.C. Accessory gene regulator group II polymorphism in methicillin-resistant Staphylococcus aureus is predictive of failure of vancomycin therapy. Clin. Infect. Dis. 2004; 38:1700-1705.
  19. National Nosocomial Infections Surveillance (NNIS) System Report, Data Summary from January 1992-June 2001, Issued August 2001. Am. J. Infect Control. 2001; 29: 404-421.
  20. Queenan A.M., Bush K. Carbapenemases: the versatile beta-lactamases. Clin. Microbiol. Rev. 2007;20(3):440-458,
  21. Raad I., Hanna H., Jiang Y., Dvorak T., Reitzel R., Chaiban G., Sherertz R., Hachem R. Comparative activities of daptomycin, linezolid, and tigecycline against catheter-related methicillin-resistant Staphylococcus bacteremic isolates embedded in biofilm. Antimicrobial Agents And Chemotherapy. 2007; 51: 1656-1660.
  22. Rayner C.R., Baddour L.M., Birmingham M.C., Norden C., Meagher A.K., Schentag J.J. Linezolid in the treatment of osteomyelitis: results of compassionate use experience. Infection. 2004; 32: 8-14.
  23. Rice D. A. K., Mendez-Vigo L. Daptomycin in bone and joint infections: a review of the literature. Arch. Orthop. Trauma Surg. 2009; 129:1495-1504.
  24. Rose W.E., Poppens P.T. Impact of biofilm on the in vitro activity of vancomycin alone and in combination with tigecycline and rifampicin against Staphyloccoccus aureus. J. Antimicrob. Chemother. 2008; 63:485-488.
  25. Sirot J., Lopitaux R., Dumont C., Rampon S., Cluzel R. Diffusion de la fosfomycine dans le tissu osseux chez l'homme. Pathol. Biol. Paris. 1983; 31: 522-524.
  26. Stewart P.S., Costerton J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001;358:135-8
  27. Werth B.J., Sakoulas G., Rose W. E., Pogliano J., Tewhey R., Rybaka M. J. Ceftaroline increases membrane binding and enhances the activity of daptomycin against daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus in a pharmacokinetic/ pharmacodynamic model. Antimicrobial Agents and Chemotherapy. 2013; 57(1): 66-73
  28. Yamaoka T. The bactericidal effects of anti-MRSA agents with rifampicin and sulfamethoxazole-trimethoprim against intracellular phagocytized MRSA. J. Infect. Chemother. 2007; 13:141-146.
  29. Yin L.Y., Lazzarini L., Li F., Stevens C.M., Calhoun J.H. Comparative evaluation of tigecycline and vancomycin with and without rifampicin, in the treatment of methicillin resistant Staphylococcus aureus experimental osteomyelitis in a rabbit model. J. Antimicrob. Chemother. 2005; 55: 995-1002.
  30. Zimmerli W., Trampuz A., Biomaterials-associated infection: a perspective from the clinic. In: Moriarty T. F., Zaat S. A. J., Busscher H. eds. Biomaterials associated infection: immunological aspects and antimicrobial strategies; NY: Springer, London: Heidelberg Dordrecht. 2013; p. 3-24.
  31. Zimmerli W., Trampuz A., Ochsner P.E. Prosthetic-joint infections. N. Engl. J. Med. 2004; 351: 1645-1654.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 82474 от 10.12.2021.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies