The Effect of Vancomycin and Silver Combination on the Duration of Antibacterial Activity of Bone Cement and Methicillin-Resistant Staphylococcus aureusBiofilm Formation

Cover Page

Cite item


Background.Local prevention of periprosthetic infection and treatment of infectious complications after various joints arthroplasties includes the use of polymethylmethacrylate-based spacers impregnated with antimicrobial agents. At the same time, the added components are able to change the bone cement characteristics and have variable antimicrobial effect duration. The aim of the studywas to evaluate the duration of antimicrobial activity and the effect on the MRSA ATCC 43300 biofilm formation on bone cement samples with gentamycin impregnated with vancomycin and/or highly dispersed silver.

Materials and Methods.Samples were made from bone cement DePuy CMW 1 Gentamicin and mixed with vancomycin and/or highly dispersed silver. The elemental composition was studied by scanning electron microscopy and  micro-x-ray  spectral  analysis.  The  study  of  the  antimicrobial  activity  duration  was  performed  by  daily  applying an  incubation  solution  with  samples  to  the  bacterial  lawn  surface.  The  effect  on  biofilm  formation  was  evaluated  by immersing the test samples in LB-broth with MRSA.

Results.The control samples did not have antimicrobial activity (AMA) against MRSA ATCC 43300. Test samples, additionally containing 10 wt.% of vancomycin was effective for 9 days. When adding highly dispersed silver, the lengthening of the samples activity time was recorded. So, when applying 2.5 wt.% of highly dispersed silver, the duration of AMA was 21 days, and when increased to 10 wt.% — 34 days. Energydispersion analysis of the sample surface with 10 wt.% of vancomycin and highly dispersed silver showed that the skeletal structure type contains matrix component based on barium sulfate with silver inclusions. During the study of the samples effect  on  a  typical  strain  biofilm  formation,  no  statistically  significant  differences  were  found  between  the  optical density of gentian violet extracts in the negative control and in the medium with MRSA.

Conclusion. The vancomycin with highly dispersed silver combination prolonged the antimicrobial activity of the samples against MRSA ATCC 43300 and effectively prevented the formation of microbial biofilms on its surface. Despite the fact that the conditions of the conducted experiment in vitro are not identical to the conditions of bone cement antimicrobial spacers clinical use, our results indicate the need to use spacers with a known duration of antimicrobial activity and to comply with the terms of temporary structures replacement.

About the authors

S. A. Bozhkova

Vreden National Medical Research Center of Traumatology and Orthopedics

ORCID iD: 0000-0002-2083-2424

Svetlana A. Bozhkova — Dr. Sci. (Med.)

St. Petersburg

E. M. Gordina

Vreden National Medical Research Center of Traumatology and Orthopedics

Author for correspondence.
ORCID iD: 0000-0003-2326-7413

Ekaterina  M.  Gordina —  Cand.  Sci.  (Med.

St. Petersburg

Russian Federation

M. A. Markov

Saint-Petersburg State Institute of Technology

ORCID iD: 0000-0002-3196-7535

Mikhail A. Markov— Cand. Sci. (Tech.)

St. Petersburg

A. V. Afanasyev

Vreden National Medical Research Center of Traumatology and Orthopedics

ORCID iD: 0000-0002-3097-7846

Alexander  V.  Afanas’ev 

St. Petersburg


V. A. Artyukh

Vreden National Medical Research Center of Traumatology and Orthopedics

ORCID iD: 0000-0002-5087-6081

Vasilii A. Artyukh—  Cand.  Sci.  (Med.)

St. Petersburg

K. V. Malafeev

Peter the Great St. Petersburg Polytechnic University

ORCID iD: 0000-0002-8540-8608

Konstantin V. Malafeev

St. Petersburg

E. M. Ivan’kova

Peter the Great St. Petersburg Polytechnic University; Institute Of Macromolecular Compounds Russian Academy of Sciences

ORCID iD: 0000-0002-4823-0695

Elena M. Ivan’kova — Cand. Sci. (Phys.-Math.)

St. Petersburg


  1. Flemming H.C., Wingender J., Szewzyk U., Steinberg P., Rice S., Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016; 14(9):563–575. doi: 10.1038/nrmicro.2016.94.
  2. Crabbе A., Jensen P.О., Bjarnsholt T., Coenye T. Antimicrobial Tolerance and Metabolic Adaptations in Microbial Biofilms. Trends Microbiol. 2019;27(10):850-863. doi: 10.1016/j.tim.2019.05.003.
  3. Arciola C.R., Campoccia D., Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018;16(7):397-409. doi: 10.1038/s41579-018-0019-y.
  4. Lamret F., Colin M., Mongaret C., Gangloff S.C., Reffuveille F. Antibiotic Tolerance of Staphylococcus aureus Biofilm in Periprosthetic Joint Infections and Antibiofilm Strategies. Antibiotics (Basel). 2020;9(9):547. doi: 10.3390/antibiotics9090547.
  5. Божкова С.А., Касимова А.Р., Тихилов Р.М., Полякова Е.М., Рукина А.Н., Шабанова В.В., Ливенцов В.Н. Неблагоприятные тенденции в этиологии ортопедической инфекции: результаты 6-летнего мониторинга структуры и резистентности ведущих возбудителей. Травматология и ортопедия России. 2018;24(4):2031.
  6. Boswihi S.S., Udo E.E.. Methicillin-resistant Staphylococcus aureus: an update on the epidemiology, treatment options and infection control. J Curr Med Res Pract. 2018;8(1):18–24. doi: 10.1016/j.cmrp.2018.01.001.
  7. Wong M., Chapman M.G., Malhotra S., Mirzanejad Y., Deans G.D. Experience with high dose once-daily vancomycin for patients with skin and soft-tissue infections in an ambulatory setting. Open Forum Infect Dis. 2017;4(Suppl 1):S338. doi: 10.1093/ofid/ofx163.806.
  8. Buchholz H.W., Engelbrecht H. Depot effects of various antibiotics mixed with Palacos resins. Chirurg. 1970; 41(1)1:511-515.
  9. Durbhakula S.M., Czajka J., Fuchs M.D/, Uhl R.L. Spacer endoprosthesis for the treatment of infected total hip arthroplasty. J Arthroplasty. 2004;19(6):760-767. doi: 10.1016/j.arth.2004.02.037.
  10. Joseph T.N., Chen A.L., Di Cesare P.E. Use ofantibiotic-impregnated cement in total joint arthroplasty. J Am Acad Orthop Surg. 2003;11(1):38-47. doi: 10.5435/00124635-200301000-00006.
  11. Конев В.А., Божкова С.А., Нетылько Г.И., Афанасьев А.В, Румакин В.П., Полякова Е.М., Рукина А.Н., Парфеев Д.Г. Результаты применения фосфомицина для импрегнации остеозамещающих материалов при лечении хронического остеомиелита. Травматология и ортопедия России. 2016; 22(2):43-56.
  12. Gasparini G., De Gori M., Calonego G., Della Bora T., Caroleo B., Galasso O. Drug elution from high-dose antibiotic-loaded acrylic cement: a comparative, in vitro study. Orthopedics. 2014;37(11):e999-1005. doi: 10.3928/01477447-20141023-57.
  13. Тапальский Д.В., Осипов В.А., Сухая Г.Н., Ярмоленко М.А., Рогачев А.А., Рогачев А.В. биосовместимые композиционные антибактериальные покрытия для защиты имплантатов от микробных биопленок. Проблемы здоровья и экологии. 2013;(2):129-134.
  14. Slane J., Vivanco J., Rose W., Ploeg H.L., Squire M. Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles. Mater Sci Eng C Mater Biol Appl. 2015;48:188-196. doi: 10.1016/j.msec.2014.11.068.
  15. Kalishwaralal K., BarathManiKanth S., Pandian S.R., Deepak V., Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B Biointerfaces. 2010;79(2):340-344. doi: 10.1016/j.colsurfb.2010.04.014.
  16. Karczewski D., Winkler T., Renz N., Trampuz A., Lieb E., Perka C., Müller M. A standardized interdisciplinary algorithm for the treatment of prosthetic joint infections. Bone Joint J. 2019;101-B(2), 132–139. doi: 10.1302/0301-620X.101B2.BJJ-2018-1056.R1.
  17. Bertazzoni Minelli E, Della Bora T, Benini A. Different microbial biofilm formation on polymethylmethacrylate (PMMA) bone cement loaded with gentamicin and vancomycin. Anaerobe. 201;17(6):380-3. doi: 10.1016/j.anaerobe.2011.03.013.
  18. Rava A., Bruzzone M., Cottino U., Enrietti E., Rossi, R. Hip Spacers in Two-Stage Revision for Periprosthetic Joint Infection: A Review of Literature. Joints. 2019;7(2):56–63. doi: 10.1055/s-0039-1697608.
  19. Kim S., Bishop A.R., Squire M.W., Rose W.E., Ploeg, H.-L. Mechanical, elution, and antibacterial properties of simplex bone cement loaded with vancomycin. J Mech Behav Biomed Mater. 2020;103:103588. doi: 10.1016/j.jmbbm.2019.103588.
  20. Bishop A.R., Kim S., Squire M.W., Rose W.E., Ploeg H.-L. Vancomycin elution, activity and impact on mechanical properties when added to orthopedic bone cement. J. Mech Behav Biomed Mater 87. 2018:80–86. doi:10.1016/j. jmbbm.2018.06.033.
  21. Martínez-Moreno J., Merino V., Nacher A., Rodrigo J.L., Climente M., Merino- Sanjuan M. Antibiotic-loaded bone cement as prophylaxis in total joint replacement. Orthop Surg. 2017:9(4):331–341. doi: 10.1111/os.12351.
  22. Lilikakis A., Sutcliffe M.P.F. The effect of vancomycin addition to the compression strength of antibiotic-loaded bone cements. Int Orthop. 2009:33(3):815–819. doi: 10.1007/s00264-008-0521-3.
  23. Тапальский Д.В., Волотовский П.А., Козлова А.И., Ситник А.А. Антибактериальная активность покрытий на основе импрегнированного антибиотиками костного цемента в отношении микроорганизмов с различными уровнями антибиотикорезистентности. Травматология и ортопедия России. 2018;24(4):105-110. doi: 10.21823/2311-2905-2018-24-4-105-110.
  24. Hashimoto A, Miyamoto H, Kobatake T, Nakashima T, Shobuike T, Ueno M, Murakami T, Noda I, Sonohata M, Mawatari M. The combination of silver-containing hydroxyapatite coating and vancomycin has a synergistic antibacterial effect on methicillin-resistant Staphylococcus aureus biofilm formation. Bone Joint Res. 2020;9(5):211-218. doi: 10.1302/2046-3758.95.BJR-2019-0326.R1.
  25. Kuechle D.K., Landon G.C., Musher D.M., Noble P.C. Elution of vancomycin, daptomycin, and amikacin from acrylic bone cement. Clin Orthop Relat Res. 1991;(264):302–308. doi: 10.1097/00003086-199103000-00038.
  26. McLaren A.C., Nelson C.L., McLaren S.G., DeClerk G.R. The effect of Glycine filler on the elution rate of gentamicin from acrylic bone cement: a pilot study. Clin Orthop Relat Res. 2004;(427):25–27. doi: 10.1097/01.blo.0000143556.41472.2a.
  27. Nugent M., McLaren A., Vernon B., McLemore R. Strength of antimicrobial bone cement decreases with increased poragen fraction. Clin Orthop Relat Res. 2010;468(8):2101–2106. doi: 10.1007/s11999-010-1264-1.

Supplementary files

There are no supplementary files to display.

Copyright (c)

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 82474 от 10.12.2021.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies