Copper-Coated Spacer for Total Femoral Replacement in Recurrent Periprosthetic Joint Infection: A Case Report

Cover Page

Cite item


Background. There are few cases of entire femur modular replacement with hip and knee joints in patients with periprosthetic joint infection (PJI) in literature. They report encouraging results in patients of elderly and senile age. We present case of a copper-coated femoral spacer implantation to 50-year-old patient with multiple PJI episodes and osteomyelitis of the entire femur.

Clinical presentation. A 40-year-old male patient after resection of the proximal part of the right femur for fibrotic osteodysplasia underwent total hip arthroplasty with replacement of 15 cm of the femur. In December 2010 (20 months after implantation), instability of the femoral component developed, revision arthroplasty was performed with stem recementation. After 4 months, sinus tract formed in the area of the postoperative scar. After another 4 months, the head of the prosthesis was dislocated. In September 2011, the endoprosthesis components were removed and a unipolar cement spacer was implanted. The limb immobilized in a hip spica cast. Methicillin-sensitive S. epidermidis (MSSE) was detected in the preoperative joint aspiration puncture and periprosthetic tissues. After 3 months (December 2011), patient underwent revision total hip arthroplasty (25 cm defect was replaced). 5 years of PJI remission followed. In November 2016 after PJI recurrence the endoprosthesis was removed, and an articulating spacer was implanted. P. aeruginosa was detected in periprosthetic tissues. For the past 2.5 years there were periodically sinus tracts formations. In August of 2019 spacer’s migration resulted in an intercondylar fracture of the right femur. In September 2019, spacer was removed, and MSSE was detected in the surrounding tissues. An articulating cement spacer based on an oncological modular total femur coppercoated endoprosthesis was implanted. At each control examination during the year copper concentration in blood serum was determined, it did not exceed 900–1200 mcg/l. No local or systemic side effects were detected. The patient started working 3 months after surgery. After 6 months poor functioning sinus tract formed in the postoperative scar area in the lower third of the thigh. 1.5 years after the operation, the functional condition is satisfactory.

Conclusion. The use of the copper-coated spacer based on modular total femur endoprosthesis with hip and knee joints in a patient with multiple PJI allowed to improve the function of the limb and reduce the severity of the infectious process. No local or systemic toxic effects of copper were detected.

About the authors

A. Belokobylov

Nursultan Scientific Research Institute of Traumatology and Orthopedics

ORCID iD: 0000-0001-7930-1583

Alexey A. Belokobylov



N. D. Batpenov

Nursultan Scientific Research Institute of Traumatology and Orthopedics


Nurlan D. Batpenov



S. S. Balgazarov

Nursultan Scientific Research Institute of Traumatology and Orthopedics

ORCID iD: 0000-0003-4193-7695

Serik S. Balgazarov



V. D. Serikbayev

Nursultan Scientific Research Institute of Traumatology and Orthopedics

ORCID iD: 0000-0002-5256-7960

Valeriy D. Serikbayev



A. A. Krikliviy

Nursultan Scientific Research Institute of Traumatology and Orthopedics

ORCID iD: 0000-0002-5675-0471

Alexander A. Krikliviy



S. V. Plotnikov

East Kazakhstan Technical University

ORCID iD: 0000-0002-4105-2128

Sergey V. Plotnikov



A. Turlybekuly

Nazarbayev University

ORCID iD: 0000-0002-8686-949X

Anamzhol Turlybekuly



D. V. Rimashevskiy

RUDN University

Author for correspondence.
ORCID iD: 0000-0001-8122-5815

Denis V. Rimashevskiy


Russian Federation


  1. Fritzsche H., Goronzy J., Schaser K.D., Hofbauer C., Postler A.E., Günther K.P. Komplikationsprofil und Revisionsstrategien nach Tumorspezialendoprothetik am Hüftgelenk [Complication profile and revision concepts for megaprosthetic reconstruction following tumour resection at the hip]. Orthopade. 2020;49(2):123-132. (In German). doi: 10.1007/s00132-020-03879-8.
  2. Masters E.A., Salminen A.T., Begolo S., Luke E.N., Barrett S.C., Overby C.T. et al. An in vitro platform for elucidating the molecular genetics of S. aureus invasion of the osteocyte lacuno-canalicular network during chronic osteomyelitis. Nanomedicine. 2019;21:102039. doi: 10.1016/j.nano.2019.102039.
  3. Amin S.J., Patel R.M., Gutowski C.J., Kim T.W.B. Outcomes After Antibiotic Megaspacer Implantation in Patients with Severe Chronic Periprosthetic Infections. J Orthop Res. 2021;39(2):308-319. doi: 10.1002/jor.24911.
  4. Canham C.D., Walsh C.P., Incavo S.J. Antibiotic impregnated total femur spacers: a technical tip. Arthroplasty Today. 2017;4(1):65-70. doi: 10.1016/j.artd.2017.06.001.
  5. Gundavda M.K., Katariya A., Reddy R., Agarwal M.G. Fighting Megaprosthetic Infections: What are the Chances of Winning? Indian J Orthop. 2020;54(4):469-476. doi: 10.1007/s43465-020-00080-z.
  6. Mayes W., Edwards P.K., Mears S.C. Management of Severe Proximal Femur Bone Loss With a Modular Articulating Antibiotic Spacer. Geriatr Orthop Surg Rehabil. 2019;10:2151459319847399. doi: 10.1177/2151459319847399.
  7. Sambri A., Zucchini R., Giannini C., Zamparini E., Viale P., Donati D.M., De Paolis M. Silver-coated (PorAg®) endoprosthesis can be protective against reinfection in the treatment of tumor prostheses infection. Eur J Orthop Surg Traumatol. 2020;30(8):1345-1353. doi: 10.1007/s00590-020-02705-3.
  8. Араньязова Э.Р. Влияние наночастиц меди на колониеобразующую способность Staphylococcus aureus. Бюллетень медицинских интернет-конференций. 2016;6(5):511. Режим доступа:
  9. Бабушкина И.В., Мамонова И.А., Гладкова Е.В. Этиологическая роль возбудителей хронического остеомиелита и влияние наночастиц меди на клинические штаммы Staphylococcus aureus. Вестник Пермского университета. Серия «Биология». 2014;(2):52-56.
  10. Симонов П.В., Резниченко Л.С., Чекман И.С. Влияние наночастиц меди на клиническую картину и морфологические показатели крови при экспериментальной генерализованной инфекции у крыс. Вестник Витебского государственного медицинского университета. 2015;14(4):112-117.
  11. Astasov-Frauenhoffer M., Koegel S., Waltimo T., Zimmermann A., Walker C., Hauser-Gerspach I., Jung C. Antimicrobial efficacy of copper-doped titanium surfaces for dental implants. J Mater Sci Mater Med. 2019;30(7):84. doi: 10.1007/s10856-019-6286-y.
  12. Ellenrieder M., Haenle M., Lenz R., Bader R., Mittelmeier W. Titanium-copper-nitride coated spacers for two-stage revision of infected total hip endoprostheses. GMS Krankenhhyg Interdiszip. 2011;6(1):Doc16. doi: 10.3205/dgkh000173.
  13. Gollwitzer H., Haenle M., Mittelmeier W., Heidenau F., Harrasser N. A biocompatible sol-gel derived titania coating for medical implants with antibacterial modification by copper integration. AMB Express. 2018;8(1):24. doi: 10.1186/s13568-018-0554-y.
  14. Mauerer A., Stenglein S., Schulz-Drost S., Schörner C., Taylor D., Krinner S. et al. Antibacterial Effect of a 4x Cu-TiO₂ Coating Simulating Acute Periprosthetic Infection-An Animal Model. Molecules. 2017;22(7):1042. doi: 10.3390/molecules22071042.
  15. Kim H.J., Lim H.S., Lee K.R., Choi M.H., Kang N.M., Lee C.H. et al. Determination of Trace Metal Levels in the General Population of Korea. 2017;14(7):702. doi: 10.3390/ijerph14070702
  16. Romero C.D., Sánchez P.H., Blanco F.L., Rodríguez E.R., Majem L.S. Serum copper and zinc concentrations in a representative sample of the Canarian population. J Trace Elem Med Biol. 2002;16(2):75-81. doi: 10.1016/s0946-672x(02)80032-3.
  17. Meyer T.J., Ranfall J., Thu P., Gadura N. Antimicrobial Properties of Copper in Gram-Negative and Gram- Positive Bacteria. Int J Pharmacol Pharmaceut Sci. 2015;9(3):274-278.
  18. Lemire J.A., Harrison J.J., Turner R.J. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11(6):371-384. doi: 10.1038/nrmicro3028.
  19. Husain N., Mahmood R. Copper (II) generates ROS and RNS, impairs antioxidant system and damages membrane and DNA in human blood cells. Environ Sci Pollut Res Int. 2019;26(20):20654-20668. doi: 10.1007/s11356-019-05345-1.
  20. Tchounwou P.B., Yedjou C.G., Patlolla A.K., Sutton D.J. Heavy metal toxicity and the environment. Exp Suppl. 2012;101:133-164. doi: 10.1007/978-3-7643-8340-4_6.
  21. Linder M.C., Hazegh-Azam M. Copper biochemistry and molecular biology. Am J Clin Nutr. 1996;63(5):797S-811S. doi: 10.1093/ajcn/63.5.797.
  22. Linder M.C. Nutritional biochemistry of copper, with emphasis on the perinatal period. In: Avigliano L.A., Rossi L. (eds.) Biochemical Aspects of Human Nutrition. Trivandrum, Kerala, India: Transworld Research Network; 2010. p. 143-179.
  23. Itoh S., Ozumi K., Kim H.W., Nakagawa O., McKinney R.D., Folz R.J. et al. Novel mechanism for regulation of extracellular SOD transcription and activity by copper: role of antioxidant-1. Free Radic Biol Med. 2009;46(1):95-104. doi: 10.1016/j.freeradbiomed.2008.09.039.
  24. Tokar E.J., Diwan B.A., Waalkes M.P. Arsenic exposure transforms human epithelial stem/progenitor cells into a cancer stem-like phenotype. Environ Health Perspect. 2010;118(1):108-115. doi: 10.1289/ehp.0901059.
  25. Bergomi M., Rovesti S., Vinceti M., Vivoli R., Caselgrandi E., Vivoli G. Zinc and copper status and blood pressure. J Trace Elem Med Biol. 1997;11(3):166-169. doi: 10.1016/S0946-672X(97)80047-8.
  26. Ford E.S. Serum copper concentration and coronary heart disease among US adults. Am J Epidemiol. 2000;151(12):1182-1188. doi: 10.1093/oxfordjournals.aje.a010168.
  27. Salonen J.T., Salonen R., Korpela H., Suntioinen S., Tuomilehto J. Serum copper and the risk of acute myocardial infarction: a prospective population study in men in eastern Finland. Am J Epidemiol. 1991;134(3):268-276. doi: 10.1093/oxfordjournals.aje.a116080.
  28. Prinz C., Elhensheri M., Rychly J., Neumann H.G. Antimicrobial and bone-forming activity of a copper coated implant in a rabbit model. J Biomater Appl. 2017;32(2):139-149. doi: 10.1177/0885328217713356.
  29. Zapotoczna M., Riboldi G.P., Moustafa A.M., Dickson E., Narechania A., Morrissey J.A. et al. Mobile-Genetic-Element-Encoded Hypertolerance to Copper Protects Staphylococcus aureus from Killing by Host Phagocytes. mBio. 2018;9(5):e00550-00518. doi: 10.1128/mBio.00550-18.

Supplementary files

There are no supplementary files to display.

Copyright (c)

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 82474 от 10.12.2021.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies