Cementless Hip Implants: History and Current Status of the Issue

Cover Page


Background. Total hip arthroplasty is an effective type of surgery with excellent survival rates of modern implants. From the very beginning of the widespread introduction of total hip arthroplasty, the cement technique of components fixing prevailed. However, many researchers associated the development of osteolysis and the following loosening with the reaction to cement. The subsequent studies clarified the situation regarding the nature of osteolysis, but there remained the problem of insufficient stability of the cemented stems to withstand the penetration of polyethylene wear particles into the distal part of the stem with the development of loosening. An ideal endoprosthesis should ensure the normal hip biomechanics, joint painless functioning and improve the quality of life of the patient without the need for revision. The optimal results of cementless femoral stems functioning depend on the achievement of initial stability, osseointegration and equable transmission of tension onto the femur. There are many factors that influence osseointegration processes and the subsequent behavior of the implant. Understanding these factors is the key to choosing the optimal implant for a particular patient, taking into account the anatomical features of the femur.

The purpose of this article is to discuss upon the literature review the application of cementless femoral components, the possible causes of failure and its prevention from the point of view of the evidence-based practice.

Materials. The search was conducted in the PubMed, eLIBRARY databases and through the Web of Knowledge. Survival rates and prevalence of various implants in the structure of primary arthroplasty were estimated on the basis of annual reports of a number of national registries, as well as the hip arthroplasty registry of the Vreden National Medical Research Center of Traumatology and Orthopedics. Among the factors discussed are the properties of the components material, the form of the implants, surface properties, and the influence of the anatomical features of the femur. Additionally, the most used types of cementless femoral components were assessed.

Conclusion. Cementless femoral components demonstrated the excellent long-term survival and functional results. The currently prevailing type of the prosthesis intimate attachment to the bone is the biological fixation, especially in groups of young patients. Future studies of cementless implants should necessarily take into account the patient’s age, level of activity, type of bone canal, the presence of deformities, and the friction pair used. This will make it possible to draw clearer conclusions in what clinical situation it is advisable to use the femoral components of a particular design.

About the authors

I. I. Shubnyakov

Vreden National Medical Research Center of Traumatology and Orthopedics;
St. Petersburg State Pediatric Medical University

Author for correspondence.
Email: shubnyakov@mail.ru

Igor I. Shubnyakov — Dr. Sci. (Med.), Deputy Director; Professor, Department of Hospital Surgery

St. Petersburg

Russian Federation

A. Riahi

St. Petersburg State Pediatric Medical University

Email: fake@neicon.ru

Aymen Riahi – PhD Student

St. Petersburg

Russian Federation

M. I. Shubnyakov

Vreden National Medical Research Center of Traumatology and Orthopedics

Email: fake@neicon.ru

Maxim I. Shubnyakov – Researcher, Hip Pathology Department

St. Petersburg

Russian Federation

A. O. Denisov

Vreden National Medical Research Center of Traumatology and Orthopedics

Email: fake@neicon.ru

Alexey O. Denisov — Cand. Sci. (Med.), Academic Secretary

St. Petersburg

Russian Federation

I. E. Khujanazarov

Tashkent Medical Academy;
Uzbekistan Republican Specialized Scientific and Practical Medical Center

Email: fake@neicon.ru

Ilkhom E. Khujanazarov — Dr. Sci. (Med.), Head of Traumatology, Orthopedics and Neurosurgery Chair; Head of Orthopedic Rehabilitation Department

Tashkent, Republic of Uzbekistan


R. M. Tikhilov

Vreden National Medical Research Center of Traumatology and Orthopedics;
Mechnikov North-Western State Medical University

Email: fake@neicon.ru

Rashid M. Tikhilov — Dr. Sci. (Med.), Professor, Director; Professor, Traumatology and Orthopedics Department

St. Petersburg

Russian Federation


  1. Willert H.G., Semlitsch M. Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res. 1977;11(2):157-164. doi: 10.1002/jbm.820110202.
  2. Galante J., Rostoker W., Lueck R., Ray R.D. Sintered fiber metal composites as a basis for attachment of implants to bone. J Bone Joint Surg Am. 1971;53(1):101-114.
  3. Harris W.H. The first 50 years of total hip arthroplasty: lessons learned. Clin Orthop Relat Res. 2009;467(1):28-31. doi: 10.1007/s11999-008-0467-1.
  4. Lord G., Marotte J.H., Blanchard J.P., Guillamon J.L., Gory M. Biological fixation of total hip arthroplasty without cement. Initial evaluation of 200 madreporic prostheses]. Rev Chir Orthop Reparatrice Appar Mot. 1978;64 Suppl 2:5-13.
  5. Engh C.A., Bobyn J.D., Glassman A.H. Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg Br. 1987;69(1):45-55.
  6. Кавалерский Г., Мурылев В.Ю., Рукин Я., Серова В. Причины асептического расшатывания компонентов тотального эндопротеза тазобедренного сустава. Врач. 2008;(6):49-51.
  7. Батпенов Н.Д., Франке Р., Клеминг У., Гатцке Ф., Баймагамбетов Ш.А., Батпен А. Экспериментальные исследования прочности бедренного компонента нового эндопротеза тазобедренного сустава. Клиническая медицина Казахстана. 2013;27(1): 63-65.
  8. Шубняков И.И., Тихилов Р.М., Денисов А.О., Ахмедилов М.А., Черный А.Ж., Тотоев З.А. и др. Что изменилось в структуре ревизионного эндопротезирования тазобедренного сустава в последние годы? Травматология и ортопедия России. 2019;25(4):9-27. doi: 10.21823/2311-2905-2019-25-4-9-27.
  9. Мурылев В.Ю., Кавалерский Г.М., Терентьев Д.И., Рукин Я.А., Елизаров П.М., Музыченков А.В. Пятилетние результаты применения керамических и керамо-полиэтиленовых пар трения при эндопротезировании тазобедренного сустава. Травматология и ортопедия России. 2017;23(1):89-97. doi: 10.21823/2311-2905-2017-23-1-89-97.
  10. Корж Н.А., Танькут В.А., Филиппенко В.А., Танькут А.В., Подгайская О.А., Жигун А.И. Значение распределения напряжений в костной ткани вокруг компонентов эндопротеза тазобедренного сустава для стабильной фиксации имплантата. Вiсник СевНТУ. 2013;(137):110-118.
  11. Шубняков И.И., Тихилов Р.М., Гончаров М.Ю., Карпухин А.С., Мазуренко А.В., Плиев Д.Г. и др. Достоинства и недостатки современных пар трения эндопротезов тазобедренного сустава (обзор иностранной литературы). Травматология и ортопедия России. 2010;(3):147-156. doi: 10.21823/2311-2905-2010-0-3-147-156.
  12. Galante J.O., Jacobs J. Clinical performances of ingrowth surfaces. Clin Orthop Relat Res. 1992;(276):41-49.
  13. Khanuja H.S., Vakil J.J., Goddard M.S., Mont M.A. Cementless femoral fixation in total hip arthroplasty. J Bone Joint Surg Am. 2011;93(5):500-509. doi: 10.2106/JBJS.J.00774.
  14. Feyen H., Shimmin A.J. Is the length of the femoral component important in primary total hip replacement? Bone Joint J. 2014;96-B(4):442-448. doi: 10.1302/0301-620X.96B4.33036.
  15. Hofmann A.A., Bloebaum R.D., Bachus K.N. Progression of human bone ingrowth into porous-coated implants. Rate of bone ingrowth in humans. Acta Orthop Scand. 1997;68(2):161-166. doi: 10.3109/17453679709004000.
  16. Голубев Г.Ш., Кабанов В.Н. Долгосрочный анализ серии случаев эндопротезирования тазобедренного сустава в зависимости от доступа и типа эндопротезирования. Медицинский вестник Юга России. 2018;9(2):26-34. doi: 10.21886/2219-8075-2018-9-2-26-34.
  17. Healy W.L., Tilzey J.F., Iorio R., Specht L.M., Sharma S. Prospective, randomized comparison of cobaltchrome and titanium trilock femoral stems. J Arthroplasty. 2009;24(6):831-836. (In Russian). doi: 10.1016/j.arth.2008.06.035.
  18. Бондарь В.К., Косяков А.Н., Бурьянов А.А., Hindenlang U., Schneider R. Компьютерное моделирование эндопротезирования тазобедренного сустава с использованием трабекулярно-бионического бедренного компонента Рhysiohip. Травма. 2017;18(6): 88-96. doi: 10.22141/1608-1706.6.18.2017.121184.
  19. Nakahara I., Takao M., Bandoh S., Bertollo N., Walsh W.R., Sugano N. Novel surface modifications of carbon fiber-reinforced polyetheretherketone hip stem in an ovine model. Artif Organs. 2012;36(1): 62-70. doi: 10.1111/j.1525-1594.2011.01275.x.
  20. Hirschhorn J., Reynolds J. Powder Metallurgy Fabrication of Cobalt-Base Alloy Surgical Implants. In: Research in Dental and Medical Materials. Ed. by E. Korostoff. New York: Plenum Publishing Co.; 1969. p. 137-150.
  21. Pilliar R.M., Cameron H.U., Macnab I. Porous surface layered prosthetic devices. Biomed Eng. 1975;10(4):126-131.
  22. Ryan G., Pandit A., Apatsidis D.P. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006;27(13):2651-2670. doi: 10.1016/j.biomaterials.2005.12.002.
  23. Albrektsson T., Brånemark P.I., Hansson H.A., Lindstrom J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct boneto-implant anchorage in man. Acta Orthop Scand. 1981;52(2):155-170. doi: 10.3109/17453678108991776.
  24. Head W.C., Bauk D.J., Emerson R.H. Jr. Titanium as the material of choice for cementless femoral components in total hip arthroplasty. Clin Orthop Relat Res. 1995;(311):85-90.
  25. Harris W.H. Aseptic loosening in total hip arthroplasty secondary to osteolysis induced by wear debris from titanium-alloy modular femoral heads. J Bone Joint Surg Am. 1991;73(3):470-472.
  26. Rivière C., Grappiolo G., Engh C.A.Jr., Vidalain J-P., Chen A-F., Boehler N. et al. Long-term bone remodelling around «legendary» cementless femoral stems. EFORT Open Rev. 2018;3(2):45-57. doi: 10.1302/2058-5241.3.170024.
  27. Карагодина М.П., Шубняков И.И., Тихилов Р.М., Плиев Д.Г., Денисов А.О. Адаптивное ремоделирование костной ткани вокруг бедренных компонентов бесцементной фиксаци fitmore и alloclassic. Травматология и ортопедия России. 2015;(4):15-28. doi: 10.21823/2311-2905-2015-0-4-15-28.
  28. Oh I., Harris W.H. Proximal strain distribution in loaded femur. An in vitro comparison of distributions in intact femur and after insertion of different hipreplacement femoral components. J Bone Joint Surg Am. 1978;60(1):75-85.
  29. Bobyn J.D., Mortimer E.S., Glassman A.H., Engh C.A., Miller J.E., Brooks C.E. Producing and avoiding stress shielding. Laboratory and clinical observations of noncemented total hip arthroplasty. Clin Orthop Relat Res. 1992;(274):79-96.
  30. Kiratli B.J., Heiner J.P., McBeath A.A., Wilson M.A. Determination of bone mineral density by dual x-ray absorptiometry in patients with uncemented total hip arthroplasty. J Orthop Res. 1992;10(6):836-844. doi: 10.1002/jor.1100100613.
  31. Brown T.E., Larson B., Shen F., Moskal J.T. Thigh pain after cementless total hip arthroplasty: evaluation and management. J Am Acad Orthop Surg. 2002;10(6):385-392. doi: 10.5435/00124635-200211000-00002.
  32. Morrey B.F. Short-stemmed uncemented femoral component for primary hip arthroplasty. Clin Orthop Relat Res. 1989;(249):169-175.
  33. Menon D.K., McCreath S.W. 5- to 8-year results of the Freeman press-fit hip arthroplasty without HA coating: a clinicoradiologic study. J Arthroplasty. 1999;14(5): 581-588. doi: 10.1016/s0883-5403(99)90081-5.
  34. Forster-Horvath C., Egloff C., Valderrabano V., Nowakowski A.M. The painful primary hip replacement - review of the literature. Swiss Med Wkly. 2014;144:w13974. doi: 10.4414/smw.2014.13974.
  35. Lavernia C., D’Apuzzo M., Hernandez V., Lee D. Thigh pain in primary total hip arthroplasty: the effects of elastic moduli. J Arthroplasty. 2004;19(7 Suppl 2):10-16. doi: 10.1016/j.arth.2004.06.023.
  36. Kim Y.H. Titanium and cobalt-chrome cementless femoral stems of identical shape produce equal results. Clin Orthop Relat Res. 2004;(427):148-156. doi: 10.1097/01.blo.0000142350.80416.84.
  37. Healy W.L., Tilzey J.F., Iorio R., Specht L.M., Sharma S. Prospective, randomized comparison of cobalt-chrome and titanium trilock femoral stems. J Arthroplasty. 2009;24(6):831-836. doi: 10.1016/j.arth.2008.06.035.
  38. Giebaly D.E., Twaij H., Ibrahim M., Haddad F.S. Cementless hip implants: an expanding choice. Hip Int. 2016;26(5):413-423. doi: 10.5301/hipint.5000423.
  39. Куропаткин Г.В., Ельцев Ю.П., Седова О.Н., Морозова А.Д. Изоэластические эндопротезы: ожидания, реальность и надежды. Кремлевская медицина. Клинический вестник. 2015;(4):16-20.
  40. Trebse R., Milosev I., Kovac S., Mikek M., Pisot V. Poor results from the isoelastic total hip replacement: 14-17-year follow-up of 149 cementless prostheses. Acta Orthop. 2005;76(2):169-176. doi: 10.1080/00016470510030535.
  41. Horwood N.J., Nam D., Greco N.J., Lombardi A.V. Jr., Clohisy J.C., Lawrie C.M. et al. Reduced Thigh Pain with Short Femoral Stem Design Following Direct Anterior Primary Total Hip Arthroplasty. Surg Technol Int. 2019;34:437-444.
  42. Pilliar R.M., Lee J.M., Maniatopoulos C. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res. 1986;(208):108-113.
  43. Emerson R.H. Jr., Sanders S.B., Head W.C., Higgins L. Effect of circumferential plasma-spray porous coating on the rate of femoral osteolysis after total hip arthroplasty. J Bone Joint Surg Am. 1999;81(9):1291-1298. doi: 10.2106/00004623-199909000-00010.
  44. Sinha R.K., Dungy D.S., Yeon H.B. Primary total hip arthroplasty with a proximally porous-coated femoral stem. J Bone Joint Surg Am. 2004;86(6):1254-1261. doi: 10.2106/00004623-200406000-00019.
  45. Eskelinen A., Remes V., Helenius I., Pulkkinen P., Nevalainen J., Paavolainen P. Uncemented total hip arthroplasty for primary osteoarthritis in young patients: a mid-to long-term follow-up study from the Finnish Arthroplasty Register. Acta Orthop. 2006;77(1):57-70. doi: 10.1080/17453670610045704.
  46. LaPorte D.M., Mont M.A., Hungerford D.S. Proximally porouscoated ingrowth prostheses: limits of use. Orthopedics. 1999;22(12):1154-1160.
  47. Pilliar R.M. Cementless implant fixation — toward improved reliability. Orthop Clin North Am. 2005;36(1):113-119. doi: 10.1016/j.ocl.2004.08.001.
  48. Callaghan J.J. The clinical results and basic science of total hip arthroplasty with porous-coated prostheses. J Bone Joint Surg Am. 1993;75(2):299-310. doi: 10.2106/00004623-199302000-00020.
  49. Collier J.P., Head W.C., Koeneman J.B., Rothman R.H., Whiteside .LA. Symposium: porous-coating methods: the pros and cons. Contemp Orthop. 1993;27(3):269-296.
  50. Hacking S.A., Bobyn J.D., Tanzer M., Krygier J.J. The osseous response to corundum blasted implant surfaces in a canine hip model. Clin Orthop Relat Res. 1999; (364):240-253. doi: 10.1097/00003086-199907000-00031.
  51. Delaunay C., Bonnomet F., North J., Jobard D., Cazeau C., Kempf J.F. Grit-blasted titanium femoral stem in cementless primary total hip arthroplasty: a 5- to 10-year multicenter study. J Arthroplasty. 2001;16(1):47-54. doi: 10.1054/arth.2001.17940.
  52. Bobyn J.D., Stackpool G.J., Hacking S.A., Tanzer M., Krygier J.J. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg Br. 1999;81(5):907-914. doi: 10.1302/0301-620x.81b5.9283.
  53. Bondarenko S., Dedukh N., Filipenko V., Akonjom M., Badnaoui A.A., Schwarzkopf R. Comparative analysis of osseointegration in various types of acetabular implant materials. Hip Int. 2018;28(6):622-628. doi: 10.1177/1120700018759314.
  54. Ghani Y., Coathup M.J., Hing K.A., Blunn G.W. Development of a hydroxyapatite coating containing silver for the prevention of peri-prosthetic infection. J Orthop Res. 2012;30(3):356-363. doi: 10.1002/jor.21543.
  55. Tuukkanen J., Nakamura M. Hydroxyapatite as a Nanomaterial for Advanced Tissue Engineering and Drug Therapy. Curr Pharm Des. 2017;23(26):3786-3793. doi: 10.2174/1381612823666170615105454.
  56. Surmenev R.A., Surmeneva M.A., Ivanova A.A. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis – a review. Acta Biomater. 2014;10(2):557-579. doi: 10.1016/j.actbio.2013.10.036.
  57. Nasiri N., Ceramidas A., Mukherjee S., Panneerselvan A., Nisbet D.R., Tricoli A. Ultra-Porous Nanoparticle Networks: A Biomimetic Coating Morphology for Enhanced Cellular Response and Infiltration. Sci Rep. 2016;6:24305. doi: 10.1038/srep24305.
  58. Guillem-Marti J., Cinca N., Punset M., Cano I.G., Gil F.J., Guilemany J.M. et al. Porous titanium-hydroxyapatite composite coating obtained on titanium by cold gas spray with high bond strength for biomedical applications. Colloids Surf B Biointerfaces. 2019;180:245-253. doi: 10.1016/j.colsurfb.2019.04.048.
  59. Castellini I., Andreani L., Parchi P.D., Bonicoli E., Piolanti N., Risoli F. et al. Hydroxyapatite in total hip arthroplasty. Our experience with a plasma spray porous titanium alloy/hydroxyapatite double-coated cementless stem. Clin Cases Miner Bone Metab. 2016;13(3): 221-227. doi: 10.11138/ccmbm/2016.13.3.221.
  60. Søballe K., Overgaard S. The current status of hydroxyapatite coating of prostheses. J Bone Joint Surg Br. 1996;78(5):689-691.
  61. Stephenson P.K., Freeman M.A., Revell P.A., Germain J., Tuke M., Pirie C.J. The effect of hydroxyapatite coating on ingrowth of bone into cavities in an implant. J Arthroplasty. 1991;6(1):51-58. doi: 10.1016/s0883-5403(06)80157-9.
  62. Khor K.A., Gu Y.W., Pan D., Cheang P. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings. Biomaterials. 2004;25(18):4009-4017. doi: 10.1016/j.biomaterials.2003.10.089.
  63. Søballe K., Overgaard S., Hansen E.S., Brokstedt-Rasmussen H., Lind M., Bünger C. A review of ceramic coatings for implant fixation. J Long Term Eff Med Implants. 1999;9(1-2):131-151.
  64. Demnati I., Grossin D., Combes C., Rey C. Plasma-Sprayed Apatite Coatings: Review of Physical-Chemical Characteristics and Their Biological Consequences January. J Med Biological Engineer. 2014;34(1):1-7. doi: 10.5405/jmbe.14591.
  65. Naga S.M., Sayed M., Awaad M., Katamish H., Ashraf M. Abu-Seida et al. Implantation and In Vivo study of the biogenic hydroxyapatite-coated Ti/Al alloy in dogs. Int J Dent Sci Inn Res. 2019;2(6):667-676.
  66. Harun W.S.W., Asri R.I.M., Alias J., Zulkifli F.H., Kadirgama K., Ghani S.A.C., Shariffuddine J.H.M. A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceramics Int. 2018. Available from: https://www.researchgate.net/publication/320665903_A_comprehensive_review_of_hydroxyapatite-based_coatings_adhesion_on_metallic_biomaterials.
  67. Remache D., Balcaen Y., Demnati I., Grossin D., Alexis J., Bertrand G. et al. Delamination study of hydroxyapatite coatings for bone orthopedic implants. 24e me Congre s Français de Mécanique. Brest, 26 au 30 Août 2019. Available from: https://cfm2019.sciencesconf. org/252195/document.
  68. Chen Y.L., Lin T., Liu A., Shi M.M., Hu B., Shi Z.L. et al. Does hydroxyapatite coating have no advantage over porous coating in primary total hip arthroplasty? A meta-analysis. J Orthop Surg Res. 2015;10:21. doi: 10.1186/s13018-015-0161-4.
  69. Syed F., Hussein A., Katam K., Saunders P., Young S.K., Faisal M. Risk of subsidence and periprosthetic fractures using collared hydroxyapatitecoated stem for hip arthroplasty in the elderly. Hip Int. 2018;28(6):663-667. doi: 10.1177/1120700017754085.
  70. Rattanaprichavej P., Laoruengthana A., Chotanaphuti T., Khuangsirikul S., Phreethanutt C., Pongpirul K. Subsidence of Hydroxyapatite-Coated Femoral Stem in Dorr Type C Proximal Femoral Morphology. J Arthroplasty. 2019;34(9):2011-2015. doi: 10.1016/j.arth.2019.05.017.
  71. Hailer N.P., Lazarinis S., Mäkelä K.T., Eskelinen A., Fensta A.M., Hallan G. et al. Hydroxyapatite coating does not improve uncemented stem survival after total hip arthroplasty. Acta Orthop. 2015;86(1):18-25. doi: 10.3109/17453674.2014.957088.
  72. Руководство по хирургии тазобедренного сустава. Под ред. Р.М. Тихилова И.И. Шубнякова. Санкт-Петербург: РНИИТО им. Р.Р. Вредена; 2014. T. I. с. 257-343.
  73. Dorr L.D., Lewonowski K., Lucero M., Harris M., Wan Z. Failure mechanisms of anatomic porous replacement I cementless total hip replacement. Clin Orthop Relat Res. 1997;(334):157-167.
  74. McAuley J.P., Szuszczewicz E.S., Young A., Engh C.A. Sr. Total hip arthroplasty in patients 50 years and younger. Clin Orthop Relat Res. 2004;(418):119-125. doi: 10.1097/00003086-200401000-00019.
  75. Bourne R.B., Rorabeck C.H., Ghazal M.E., Lee M.H. Pain in the thigh following total hip replacement with a porous-coated anatomic prosthesis for osteoarthrosis. A five-year follow-up study. J Bone Joint Surg Am. 1994;76(10):1464-1470. doi: 10.2106/00004623-199410000-00005.
  76. Hsieh P.H., Chang Y.H., Lee P.C., Shih C.H. Periprosthetic fractures of the greater trochanter through osteolytic cysts with uncemented MicroStructured Omnifit prosthesis: retrospective analyses Pf 23 fractures in 887 hips after 5-14 years. Acta Orthop. 2005;76(4):538-543. doi: 10.1080/17453670510041538.
  77. Hennessy D.W., Callaghan J.J., Liu S.S. Second-generation extensively porous-coated THA stems at minimum 10-year follow up. Clin Orthop Relat Res. 2009;467(9): 2290-2296. doi: 10.1007/s11999-009-0831-9.
  78. MacDonald S.J., Rosenzweig S., Guerin J.S., McCalden R.W., Bohm E.R., Bourneet R.B. et al. Proximally versus fully porous-coated femoral stems: a multicenter randomized trial. Clin Orthop Relat Res. 2010;468(2):424-432. doi: 10.1007/s11999-009-1092-3.
  79. Mont M.A., Yoon T.R., Krackow K.A., Hungerford D.S. Clinical experience with a proximally porous-coated second-generation cementless total hip prosthesis: minimum 5-year follow-up. J Arthroplasty. 1999;14(8): 930-939. doi: 10.1016/s0883-5403(99)90006-2.
  80. Butler J.B., Lansky D., Duwelius P.J. Prospective evaluation of total hip arthroplasty with a cementless, anatomically designed, porous-coated femoral implant: mean 11-year follow-up. J Arthroplasty. 2005;20(6):709-716. doi: 10.1016/j.arth.2004.11.011.
  81. Little B.S., Wixson R.L., Stulberg S.D. Total hip arthroplasty with the porous-coated anatomic hip prosthesis: results at 11 to 18 years. J Arthroplasty. 2006;21(3):338-343. doi: 10.1016/j.arth.2005.04.040.
  82. Kim Y.H. The results of a proximally-coated cementless femoral component in total hip replacement: a five- to 12-year follow-up. J Bone Joint Surg Br. 2008;90(3):299-305. doi: 10.1302/0301-620X.90B3.20096.
  83. Kim Y.H., Kim J.S., Cho S.H. Primary total hip arthroplasty with a cementless porous-coated anatomic total hip prosthesis: 10- to 12-year results of prospective and consecutive series. J Arthroplasty. 1999;14(5):538-548. doi: 10.1016/s0883-5403(99)90074-8.
  84. Purtill J.J., Rothman R.H., Hozack W.J., Sharkey P.F. Total hip arthroplasty using two different cementless tapered stems. Clin Orthop Relat Res. 2001;(393):121-127. doi: 10.1097/00003086-200112000-00014.
  85. Lombardi A.V. Jr., Berend K.R., Mallory T.H., Skeels M.D., Adams J.B. Survivorship of 2000 tapered titanium porous plasma-sprayed femoral components. Clin Orthop Relat Res. 2009;467(1):146-154. doi: 10.1007/s11999-008-0568-x.
  86. Song J.H., Jo W.L., Lee K.H., Cho Y.J., Park J., Oh S. Subsidence and perioperative periprosthetic fractures using collarless hydroxyapatite-coated stem for displaced femoral neck fractures according to Dorr type. J Orthop Surg (Hong Kong). 2019;27(3): 2309499019877530.doi: 10.1177/2309499019877530.
  87. Epinette J.A., Manley M.T. Uncemented stems in hip replacement--hydroxyapatite or plain porous: does it matter? Based on a prospective study of HA Omnifit stems at 15-years minimum follow-up. Hip Int. 2008;18(2):69-74. doi: 10.5301/hip.2008.2077.
  88. Hoskins W.T., Bingham R.J., Lorimer M., de Steiger R.N. The Effect of Size for a Hydroxyapatite-Coated Cementless Implant on Component Revision in Total Hip Arthroplasty: An Analysis of 41,265 Stems. J Arthroplasty. 2020;35(4):1074-1078. doi: 10.1016/j.arth.2019.10.060.
  89. Magill P., Hill J., O’Brien S., Stevenson M., Machenaud A., Beverland D. Observed effect of femoral component undersizing and a collarless design in the development of radiolucent lines in cementless total hip arthroplasty. Arthroplasty Today. 2020;6(1):99-103. doi: 10.1016/j.artd.2019.11.009.
  90. Каграманов С.В. Особенности эндопротезирования тазобедренного сустава эндопротезом Цваймюллера. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2006;(3):26-35.
  91. Suckel A., Geiger F., Kinzl L., Wulker N., Garbrecht M. Long-term results for the uncemented Zweymuller/Alloclassic hip endoprosthesis. A 15-year minimum follow-up of 320 hip operations. J Arthroplasty. 2009;24(6):846-853. doi: 10.1016/j.arth.2008.03.021.
  92. Grübl A., Chiari C., Giurea A., Gruber M., Kaider A., Markeret M. et al. Cementless total hip arthroplasty with the rectangular titanium Zweymuller stem. A concise follow-up, at a minimum of fifteen years, of a previous report. J Bone Joint Surg Am. 2006;88(10):2210-2215. doi: 10.2106/JBJS.E.00810.
  93. Wick M., Lester D.K. Radiological changes in second- and third-generation Zweymüller stems [published correction appears in J Bone Joint Surg Br. 2005;87(5):746]. J Bone Joint Surg Br. 2004;86(8):1108-1114. doi: 10.1302/0301-620x.86b8.14732.
  94. Руцкий А.В., Маслов А.П. Аспекты остеоинтеграции бедренного компонента эндопротеза тазобедренного сустава усиленной бесцементной фиксации. Инновационные технологии в медицине. 2013;1(01):63-72.
  95. Zang J., Uchiyama K., Moriya M., Li Z., Fukushima K., Yamamoto T. et al. Long-term clinical and radiographic results of the cementless Spotorno stem in Japanese patients: A more than 15-year follow-up. J Orthop Surg (Hong Kong). 2018;26(1):2309499017750310. doi: 10.1177/2309499017750310.
  96. Мурылев В., Казарян Г., Елизаров П., Жучков А., Рукин Я. Тотальное эндопротезирование тазобедренного сустава с использованием конических ножек. Врач. 2013;(7):52-54.
  97. Тихилов Р.М., Шубняков И.И., Денисов А.О., Плиев Д.Г., Шубняков М.И., Ваграмян А.Г., Авдеев А.И. Имеется ли клинический смысл в разделении врожденного вывиха бедра у взрослых на типы C1 и C2 по Hartofilakidis? Травматология и ортопедия России. 2019;25(3):9-24. doi: 10.21823/2311-2905-2019-25-3-9-24.
  98. Gholson J.J., Wallace S.S., Akram F., Gonzalez A., Kunze K.N., Levine B.R. Wagner Cone Midterm Survivorship and Outcomes. J Arthroplasty. 2020. pii: S0883-5403(20)30263-1. doi: 10.1016/j.arth.2020.03.015. [Epub ahead of print].
  99. Parry M.C., Vioreanu M.H., Garbuz D.S., Masri B.A., Duncan C.P. The Wagner Cone Stem for the Management of the Challenging Femur in Primary Hip Arthroplasty. J Arthroplasty. 2016;31(8):1767-1772. doi: 10.1016/j.arth.2016.02.007.
  100. Tatani I., Panagopoulos A., Diamantakos I., Sakellaropoulos G., Pantelakis S., Megas P. Comparison of two metaphyseal-fitting (short) femoral stems in primary total hip arthroplasty: study protocol for a prospective randomized clinical trial with additional biomechanical testing and finite element analysis. Trials. 2019;20(1):359. doi: 10.1186/s13063-019-3445-x.
  101. Фирсов С.А., Верещагин Н.А., Шевченко В.П. Функциональные исходы эндопротезирования тазобедренного сустава после имплантации короткого бедренного компонента под контролем навигации. Фундаментальные исследования. 2015;(1-4):840-844.
  102. Варфоломеев Д.И., Самодай В.Г. Возможности использования оригинального устройства для позиционирования инструментов при установке бедренного компонента эндопротеза тазобедренного сустава. Саратовский научно-медицинский журнал. 2019;15(1):57-61.
  103. Gómez-García F., Fernández-Fairen M., Espinosa-Mendoza R.L. A proposal for the study of cementless short-stem hip prostheses. Acta Ortop Mex. 2016;30(4):204-215.
  104. Аладышев Н.А., Ежов И.Ю. Применение коротких бедренных компонентов в эндопротезировании тазобедренного сустава. Политравма. 2017;(4):76-83.
  105. Blakeney W.G., Lavigne M., Beaulieu Y., Puliero B., Vendittoli P.A. Mid-term results of total hip arthroplasty using a novel uncemented short femoral stem with metaphyso-diaphyseal fixation [published online ahead of print, 2020 Jan 30]. Hip Int. 2020;1120700020903451. doi: 10.1177/1120700020903451.
  106. Loppini M., Grappiolo G. Uncemented short stems in primary total hip arthroplasty: The state of the art. EFORT Open Rev. 2018;3(5):149-159. doi: 10.1302/2058-5241.3.170052.
  107. Khanuja H.S., Banerjee S., Jain D., Pivec R., Mont M.A. Short bone-conserving stems in cementless hip arthroplasty. J Bone Joint Surg Am. 2014;96(20):1742-1752. doi: 10.2106/JBJS.M.00780.
  108. Berry D.J. Utility of modular implants in primary total hip arthroplasty. J Arthroplasty. 2014;29(4):657-658. doi: 10.1016/j.arth.2014.02.006.
  109. Park C.W., Lim S.J., Park Y.S. Modular Stems: Advantages and Current Role in Primary Total Hip Arthroplasty. Hip Pelvis. 2018;30(3):147-155. doi: 10.5371/hp.2018.30.3.147.
  110. Deng X., Liu J., Qu T., Li X., Zhen P., Gao Q. et al. Total hip arthroplasty with femoral osteotomy and modular prosthesis for proximal femoral deformity. J Orthop Surg Res. 2019;14(1):282. doi: 10.1186/s13018-019-1336-1.
  111. Du Y.Q., Sun J.Y., Ma H.Y., Wang S., Ni M., Zhou Y.G. Leg Length Balance in Total Hip Arthroplasty for Patients with Unilateral Crowe Type IV Developmental Dysplasia of the Hip [published online ahead of print, 2020 Mar 31]. Orthop Surg. 2020;10.1111/os.12667. doi: 10.1111/os.12667.
  112. Мазуренко А.В., Шубняков И.И. Комментарий к статье «Сравнительная оценка подвертельной укорачивающей остеотомии и проксимальной остеотомии по Paavilainen при тотальном эндопротезировании у пациентов с дисплазией тазобедренного сустава III–IV степени по Crowe». Травматология и ортопедия России. 2020;26(1):36-39. doi: 10.21823/2311-2905-2020-26-1-36-39.
  113. Li L., Yu M., Yang C., Gu G. Total hip arthroplasty (S-ROM stem) and subtrochanteric osteotomy for Crowe type IV developmental dysplasia of the hip. Indian J Orthop. 2016;50(2):195-200. doi: 10.4103/0019-5413.177575.
  114. Christie M.J., DeBoer D.K., Trick L.W., Brothers J.C., Jones R.E., Vise G.T. et al. Primary total hip arthroplasty with use of the modular S-ROM prosthesis. Four to seven-year clinical and radiographic results. J Bone Joint Surg Am. 1999;81(12):1707-1716. doi: 10.2106/00004623-199912000-00008.
  115. Biant L.C., Bruce W.J.M., Assini J.B., Walker P.M., Walsh W.R. The anatomically difficult primary total hip replacement: medium- to long-term results using a cementless modular stem. J Bone Joint Surg Br. 2008;90(4):430-435. doi: 10.1302/0301-620X.90B4.19718.
  116. Cameron H.U., Keppler L., McTighe T. The role of modularity in primary total hip arthroplasty. J Arthroplasty. 2006;21(4 Suppl 1):89-92.
  117. Robinson R.P., Clark J.E. Uncemented press-fit total hip arthroplasty using the Identifit custommolding technique. A prospective minimum 2-year follow-up study. J Arthroplasty. 1996;11(3):247-254. doi: 10.1016/s0883-5403(96)80074-x.
  118. O’Brien S., James P., Engela D., Beverland D., Kernohan G. Total hip replacement: a study of customized prostheses. Nurs Stand. 1996;10(24):37-41. doi: 10.7748/ns.10.24.37.s52.
  119. Flecher X., Pearce O., Parratte S., Aubaniac J.M., Argenson J.N. Custom cementless stem improves hip function in young patients at 15-year followup. Clin Orthop Relat Res. 2010;468(3):747-755. doi: 10.1007/s11999-009-1045-x.
  120. Tsiampas D.T., Pakos E.E., Georgiadis G.C., Xenakis T.A. Custom-made femoral implants in total hip arthroplasty due to congenital disease of the hip: a review. Hip Int. 2016;26(3):209-214. doi: 10.5301/hipint.5000355.
  121. Jacquet C., Flecher X., Pioger C., Fabre-Aubrespy M., Ollivier M., Argenson J.N. Long-term results of custommade femoral stems. Orthopade. 2020;49(5):408-416. doi: 10.1007/s00132-020-03901-z.
  122. Akbar M., Aldinger G., Krahmer K., Bruckner T., Aldinger P.R. Custom stems for femoral deformity in patients less than 40 years of age: 70 hips followed for an average of 14 years. Acta Orthop. 2009;80(4):420-425. doi: 10.3109/17453670903062470.
  123. Sakai T., Sugano N., Ohzono K., Lee S.B., Nishii T. The custom femoral component is an effective option for congenital hip dysplasia. Clin Orthop Relat Res. 2006;451(451):146-153. doi: 10.1097/01.blo.0000224061.62861.0d.
  124. Shi X.T., Li C.F., Cheng C.M., Feng C.Y., Li S.X., Liu J.G. Preoperative Planning for Total Hip Arthroplasty for Neglected Developmental Dysplasia of the Hip. Orthop Surg. 2019;11(3):348-355. doi: 10.1111/os.12472.
  125. Abdelaal O., Darwish S., El-Hofy H., Saito Y. Patientspecific design process and evaluation of a hip prosthesis femoral stem. Int J Artif Organs. 2019;42(6):271-290. doi: 10.1177/0391398818815479.
  126. Wettstein M., Mouhsine E., Argenson J.N., Rubin P.J., Aubaniac J.M., Leyvraz P.F. Three-dimensional computed cementless custom femoral stems in young patients: midterm followup. Clin Orthop Relat Res. 2005;(437):169-175. doi: 10.1097/01.blo.0000163001.14420.3a.
  127. Корыткин A.A., Герасимов С.А., Новикова Я.С., Ковалдов К.А., Морозова Е.А., Королев С.Б. и др. Сравнительная оценка подвертельной укорачивающей остеотомии и проксимальной остеотомии по Paavilainen при тотальном эндопротезировании у пациентов с дисплазией тазобедренного сустава III–IV степени по Crowe. Травматология и ортопедия России. 2020;26(1):21-35. doi: 10.21823/2311-2905-2020-26-1-21-35.
  128. Шубняков И.И., Тихилов Р.М., Николаев Н.С., Григоричева Л.Г., Овсянкин А.В., Черный А.Ж. и др. Эпидемиология первичного эндопротезирования тазобедренного сустава на основании данных регистра артропластики рниито им. Р.Р. Вредена. Травматология и ортопедия России. 2017;23(2):81-101. doi: 10.21823/2311-2905-2017-23-2-81-101.
  129. Rothbauer F., Zerwes U., Bleß H.H., Kip M. Prevalence of Hip and Knee Arthroplasty. In: White Paper on Joint Replacement: Status of Hip and Knee Arthroplasty Care in Germany. Bleß H.H., Kip M. (eds.). Berlin: Springer; 2018. Available from: http://www.ncbi.nlm.nih.gov/books/NBK546141.
  130. Jansson V., Grimberg A., Melsheimer O., Perka C., Steinbrück A. Orthopaedic registries: the German experience. EFORT Open Rev. 2019;4(6):401-408. doi: 10.1302/2058-5241.4.180064.



Abstract: 353


Article Metrics

Metrics Loading ...


Copyright (c)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies