Micro-Arc Zn- and Ag-Containing Coatings for Implants with Complex Porous Architecture Obtained by 3D Printing Method from Titanium Alloy

Cover Page

Abstract

Relevance. The creation of porous three-dimensional materials for bone defects compensation and its subsequent regeneration is an important direction of medical materials science. The key issue in the interaction of an implant and bone tissue is the surface properties of the implant.

The purpose of the study is to evaluate the physicochemical properties and compatibility of tissues of a living organism and porous implants with calcium phosphate Zn- and Ag-containing formed by microarc oxidation.

Materials and Methods. Implants with various types of porous structure were made by direct laser sintering of titanium alloy Ti-6Al-4V powders. The calcium phosphate coatings, including Zn- and Ag-containing, were formed on the implants surface by microarc oxidation.

Results. Coatings, deposited in electrolytes of various compositions, were uniformly distributed over the implants mesh structure. The phase composition of Zn-containing coatings, deposited in the acidic electrolyte, was represented by amorphous calcium phosphates. Ag-containing coatings, deposited in the alkaline electrolyte, had an amorphous-crystalline structure, the crystalline phase of which was identified as tricalcium phosphate in the α and β modifications. The samples of extracts of calcium phosphate Zn and Ag-containing coatings were co-cultured with pFb line of the human postnatal fibroblasts for 48 hours at 37°C in 5% CO2 atmosphere. The MTT test revealed a high metabolic activity of the co-cultured fibroblasts in comparison with the fibroblasts of control.

Conclusion. The pFb line of the human postnatal fibroblasts retained their viability for 48 hours of co-culturing with calcium-phosphate Zn- and Ag-containing coatings. The tested product and its components did not negatively affect the cellular respiration. However, further studies are needed to determine the rate of bioresorption and the degree of antibacterial activity of calcium-phosphate Zn- and Ag-containing coatings.

About the authors

Yu. P. Sharkeev

Institute of Strength Physics and Materials;
National Research Tomsk Polytechnic University

Email: fake@neicon.ru

Yurii P. Sharkeev — Dr. Sci. (Phys.-Math.), Professor, Head of the Laboratory of Physics of Nanostructured Biocomposites; Professor

Tomsk

Russian Federation

M. B. Sedelnikova

Institute of Strength Physics and Materials

Email: fake@neicon.ru

Mariya B. Sedelnikova — Dr. Sci. (Tech.), Assistant Professor, Senior Researcher, Laboratory of Physics of Nanostructured Biocomposites

Tomsk

Russian Federation

T. V. Tolkacheva

Institute of Strength Physics and Materials

Email: fake@neicon.ru

Tatyana V. Tolkacheva — Leading Technologist, Laboratory of Physics of Nanostructured Biocomposites

Tomsk

Russian Federation

N. A. Shcheglova

Logeeks Medical Systems

Email: fake@neicon.ru

Natalya A. Shcheglova — Development Director

Novosibirsk

Russian Federation

A. A. Panchenko

Logeeks Medical Systems

Email: fake@neicon.ru

Andrey A. Panchenko — Technical Director

Novosibirsk

Russian Federation

I. B. Krasovsky

Logeeks Medical Systems

Email: fake@neicon.ru

Igor B. Krasovsky — Director

Novosibirsk

Russian Federation

М. V. Solomatina

Federal Research Center of Fundamental and Translational Medicine

Email: fake@neicon.ru

Мaria V. Solomatina — Cand. Sci. (Biol.), Researcher, Department of Development and Testing of Pharmacological Agents

Novosibirsk

Russian Federation

M. V. Efimenko

Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics

Email: fake@neicon.ru

Maxim V. Efimenko — Orthopedic Surgeon, Department of Traumatology and Orthopedics

Novosibirsk

Russian Federation

V. V. Pavlov

Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics

Email: fake@neicon.ru

Vitaliy V. Pavlov — Dr. Sci. (Med.), Head of the Research Department

Novosibirsk

Russian Federation

L. A. Cherdantseva

Federal Research Center of Fundamental and Translational Medicine;
Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics

Email: fake@neicon.ru

Liliya A. Cherdantseva — Cand. Sci. (Med.), Head of the Laboratory for the Procurement and Preservation of Tissues; Researcher

Novosibirsk

Russian Federation

I. A. Kirilova

Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics

Author for correspondence.
Email: IKirilova@niito.ru

Irina A. Kirilova — Dr. Sci. (Med.), Deputy Director

Novosibirsk

Russian Federation

References

  1. Bassous N.J., Jones C.L., Webster T.J. 3-D printed Ti-6Al-4V scaffolds for supporting osteoblast and restricting bacterial functions without using drugs: predictive equations and experiments. Acta Biomater. 2019;96:662-673. doi: 10.1016/j.actbio.2019.06.055.
  2. Ahangar P., Cooke M.E., Weber M.H., Rosenzweig D.H. Current biomedical applications of 3D printing and additive manufacturing. Review Appl Sci. 2019;9(8):1713. doi: 10.3390/app9081713.
  3. Zhang Y., Li J., Che S., Yang Z., Tia Y. Chemical leveling mechanism and oxide film properties of additively manufactured Ti–6Al–4V alloy. J Mater Sci. 2019;54:13753-13766. doi: 10.1007/s10853-019-03855-4.
  4. McHugh K.J., Nguyen T.D., Linehan A.R., Yang D., Behrens A.M., Rose S. et al. Fabrication of fillable microparticles and other complex 3D microstructures. Science. 2017;357(6356):1138-1142. doi: 10.1126/science.aaf7447.
  5. Arabnejad S., Johnston B., Tanzer M., Pasini D. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J Orthop Res. 2017;35(8):1774-1783. doi: 10.1002/jor.23445.
  6. Surmenev R.A., Surmeneva M.A., Ivanova A.A. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis--areview. Acta Biomater. 2014;10(2):557-579. doi: 10.1016/j.actbio.2013.10.036.
  7. Falde E.J., Yohe S.T., Colson Y.L., Grinstaff M.W. Superhydrophobic materials for biomedical applications. Biomaterials. 2016;104:87-103. doi: 10.1016/j.biomaterials.2016.06.050.
  8. Otitoju T.A., Ahmad A.L., Ooi B.S. Superhydrophilic (superwetting) surfaces: A review on fabrication and application. J Industr Engineer Chemistry. 2017;47:19-40. doi: 10.1016/j.jiec.2016.12.016.
  9. Denry I., Kuhn L.T. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent Mater. 2016;32(1):43-53. doi: 10.1016/j.dental.2015.09.008.
  10. Sharma S., Verma A., Teja B.V., Pandey G., Mittapelly N., Trivedi R. et al. An insight into functionalized calcium based inorganic nanomaterials in biomedicine: Trends and transitions. Colloids Surf B Biointerfaces. 2015;133:120-139. doi: 10.1016/j.colsurfb.2015.05.014.
  11. Rizwan M., Alias R., Zaidi U.Z., Mahmoodian R., Hamd M. Surface modification of valve metals using plasma electrolytic oxidation for antibacterial applications: A review. J Biomed Mater Res A. 2018;106(2):590-605. doi: 10.1002/jbm.a.36259.
  12. Liu S., Li B., Liang C., Wang H., Qiao Z., Formation mechanism and adhesive strength of a hydroxyapatite/TiO2 composite coating on a titanium surface prepared by micro-arc oxidation. Applied Surf Sci. 2016;362:109-114. doi: 10.1016/j.apsusc.2015.11.086.
  13. Гнеденков С.В., Шаркеев Ю.П., Синебрюхов С.Л., Хрисанова О.А., Легостаева Е.В., Завидная А.Г. и др. Кальций-фосфатные биоактивные покрытия на титане. Вестник ДВО РАН. 2010;(5):47-57.
  14. Седельникова М.Б., Шаркеев Ю.П., Комарова Е.Г., Толкачева Т.В. Влияние параметров процесса микро-дугового оксидирования на формирование и свойства биопокрытий на основе волластонита и фосфатов кальция. Физика и химия обработки материалов. 2016;(6):57-63.
  15. Шаркеев Ю.П., Шейкин В.В., Седельникова М.Б., Легостаева Е.В., Комарова Е.Г., Ермаков В.В. и др. Модифицирование поверхности титановых медицинских скобок для сшивающих аппаратов методом микродугового оксидирования. Перспективные материалы. 2015;(10):46-55.
  16. Сафронова Т.В., Путляев В.И. Медицинское неорганическое материаловедение в России: кальцийфос-фатные материалы. Наносистемы: физика, химия, математика. 2013;4(1):24-47.
  17. Dorozhkin S.V. Calcium orthophosphate deposits: Preparation, properties and biomedical applications. Mater Sci Eng C Mater Biol Appl. 2015;55:272-326. doi: 10.1016/j.msec.2015.05.033.
  18. Aydogan D.T., Muhaffel F., Kilic M.M., Acar O.K, Cempura G., Baydogan M. et al. Optimization of microarc oxidation electrolyte for fabrication of antibacterial coating on titanium. Mater Technol. 2018;33(2):119-126. doi: 10.1080/10667857.2017.1391931.
  19. Widmer A.F. New developments in diagnosis and treatment of infection in orthopedic implants. Clin Infect Dis. 2001;33 Suppl 2:S94-S106. doi: 10.1086/321863.
  20. Morrison C., Macnair R., MacDonald C., Wykman A., Goldie I., Grant M.H. In vitro biocompatibility testing of polymers for orthopaedic implants using cultured fibroblasts and osteoblasts. Biomaterials. 1995;16(13): 987-992. doi: 10.1016/0142-9612(95)94906-2.
  21. Moller B., Terheyden H., Acil Y., Purcz N.M., Hertrampf K., Tabakov A. et al. A comparison of biocompatibility and osseointegration of ceramic and titanium implants: an in vivo and in vitro study. Int J Oral Maxillofac Surg. 2012;41(5):638-645. doi: 10.1016/j.ijom.2012.02.004.
  22. Sedelnikova M.B., Komarova E.G., Sharkeev Yu.P., Ugodchikova A.V., Mushtovatova L.S., Karpova M.R. et al. Zn-, Cu- or Ag-incorporated micro-arc coatings on titanium alloys: Properties and behavior in synthetic biological media. Surface Coating Technology. 2019;369:52-68. doi: 10.1016/j.surfcoat.2019.04.021.
  23. Wallace S.M., Walton B.I., Kharbanda R.K., Hardy R., Wilson A.P., Swanton R.H. Mortality from infective endocarditis: clinical predictors of outcome. Heart. 2002;88(1):53-60. doi: 10.1136/heart.88.1.53.
  24. Furko M., Jiang Y., Wilkins T.A., Balázsi C. Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials. Mater Sci Eng С. 2016;62:249-259. doi: 10.1016/j.msec.2016.01.060.
  25. Евдокимов П.В., Путляев В.И., Мерзлов Д.А., Шаталова Т.Б., Сафронова Т.В., Климашина Е.С., Чурагулов Б.Р. Полиморфизм Ca3(PO4)2. Наносистемы: физика, химия, математика. 2013;4(1):48-53.

Statistics

Views

Abstract: 327

Cited-by

CrossRef: 2

  1. Popkov AV, Kononovich NA, Gorbach EN, Popkov DA. Efficiency of 3D Implants with Bioactive Properties for Treatment of Extensive Bone Defects: Experimental Study. Traumatology and Orthopedics of Russia. 2021;27(1):37. doi: 10.21823/2311-2905-2021-27-1-37-52
  2. Qiao S, Wu D, Li Z, Zhu Y, Zhan F, Lai H, et al. The combination of multi-functional ingredients-loaded hydrogels and three-dimensional printed porous titanium alloys for infective bone defect treatment. Journal of Tissue Engineering. 2020;11:204173142096579. doi: 10.1177/2041731420965797

Dimensions

Article Metrics

Metrics Loading ...

PlumX


Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies