Osseointegration of Titanium and Steel Additive Manufactured Implant in Rabbit Tibia under External Fixation: Comparative Study

Cover Page

Abstract

Relevance. The main goals of successful prosthesis remain ensuring the osseointegration and infectious safety of implants.

The purpose of the study — the comparative analysis of osseointegration of titanium and steel additive manufactured implants in the rabbit tibia under additional fixation by Ilizarov apparatus.

Materials and Methods. The study was performed on 20 chinchilla male rabbits. The animals of the first group (n = 8 ) were implanted a stainless steel product EOS PH1 (EOS, Germany), the animals of the second group (n = 12) — a titanium alloy Ti6Al4V product. The implant was additionally fixed by Ilizarov apparatus. The implants were processed with additive technology by selective laser fusion at the EOSINT M 280 installation (EOS, Germany). The survival and safety of the implants were assessed using clinical, histological, laboratory and statistical methods.

Results. The implant fall due to chronic inflammation was found in 2 animals of group 1 and none in group 2. The formation of weakly mineralized bone tissue on the surface of the implant was noted in 3 weeks in all cases. The bone became more mineralized by the 12th week of the experiment. However, in group 2, the calcium content and Ca / P ratio of the newly formed bone tissue at the 3rd and 12th week after implantation were significantly higher than in the animals of group 1. This indicated the greater maturity of the bone tissue in animals of group 2 at all stages of the experiment. In group 1, the compact plate osteoporosis and calcium-phosphorus balance disturbance were greater.

Conclusion. The results of the study indicate that the survival rate (osseointegration) and safety of the product made of the titanium alloy were higher compared with the stainless steel product.

About the authors

A. A. Emanov

Ilizarov National Medical Research Centre for Traumatology and Orthopedics

Email: fake@neicon.ru

Andrey A. Emanov — Cand. Sci. (Vet.), Leading Researcher

Kurgan

Russian Federation

V. P. Kuznetsov

Ilizarov National Medical Research Centre for Traumatology and Orthopedics;
Ural Federal University

Email: fake@neicon.ru

Viktor P. Kuznetsov — Dr. Sci. (Tech.), Head of laboratory; Professor, Department of Heat Treatment and Metal Physics

Ekaterinburg

Russian Federation

E. N. Gorbach

Ilizarov National Medical Research Centre for Traumatology and Orthopedics

Email: fake@neicon.ru

Elena N. Gorbach — Cand. Sci. (Biol.), Leading Researcher

Kurgan

Russian Federation

M. V. Stogov

Ilizarov National Medical Research Centre for Traumatology and Orthopedics

Author for correspondence.
Email: stogo_off@list.ru

Maksim V. Stogov — Dr. Sci. (Biol.), Associate Professor, Leading Researcher

Kurgan

Russian Federation

E. A. Kireeva

Ilizarov National Medical Research Centre for Traumatology and Orthopedics

Email: fake@neicon.ru

Elena A. Kireeva — Cand. Sci. (Biol.), Senior Researcher

Kurgan

Russian Federation

E. N. Ovchinnikov

Ilizarov National Medical Research Centre for Traumatology and Orthopedics

Email: fake@neicon.ru

Evgeny N. Ovchinnikov — Cand. Sci. (Biol.), Deputy Director for Scientific Work

Kurgan

Russian Federation

References

  1. Aschoff H.H., Juhnke D.L. [Endo-exo prostheses: osseointegrated percutaneously channeled implants for rehabilitation after limb amputation]. Unfallchirurg. 2016;119(5):421-427. (In German). doi: 10.1007/s00113-016-0175-3.
  2. Gubin A.V., Kuznetsov V.P., Borzunov D.Y., Koryukov A.A., Reznik A.V., Chevardin A.Y. Challenges and perspectives in the use of additive technologies for making customized implants for traumatology and orthopedics. Вiomed Eng. 2016;50:285-289. doi: 10.1007/s10527-016-9639-6.
  3. Hansen R.L., Langdahl B.L., Jørgensen P.H., Petersen K.K., Søballe K., Stilling M. Changes in periprosthetic bone mineral density and bone turnover markers after osseointegrated implant surgery: a cohort study of 20 transfemoral amputees with 30-month follow-up. Prosthet Orthot Int. 2019;43(5):508-518. doi: 10.1177/0309364619866599.
  4. Hansson E., Hagberg K., Cawson M., Brodtkorb T.H. Patients with unilateral transfemoral amputation treated with a percutaneous osseointegrated prosthesis: a costeffectiveness analysis. Bone Joint J. 2018;100-B(4):527- 534. doi: 10.1302/0301-620X.100B4.BJJ-2017-0968.R1.
  5. Li Y., Kulbacka-Ortiz K., Caine-Winterberger K., Brånemark R. Thumb amputations treated with osseointegrated percutaneous prostheses with up to 25 years of follow-up. J Am Acad Orthop Surg Glob Res Rev. 2019;3(1):e097. doi: 10.5435/JAAOSGlobal-D-18-00097.
  6. Thesleff A., Brånemark R., Håkansson B., Ortiz-Catalan M. Biomechanical characterisation of bone-anchored implant systems for amputation limb prostheses: a systematic review. Ann Biomed Eng. 2018;46(3):377-391. doi: 10.1007/s10439-017-1976-4.
  7. Al Muderis M., Khemka A., Lord S.J., Van de Meent H., Frölke J.P. Safety of osseointegrated implants for transfemoral amputees: a two-center prospective cohort study. J Bone Joint Surg Am. 2016;98(11):900-909. doi: 10.2106/JBJS.15.00808.
  8. Brånemark R.P., Hagberg K., Kulbacka-Ortiz K., Berlin Ö., Rydevik B. Osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: a prospective five-year followup of patient-reported outcomes and complications. J Am Acad Orthop Surg. 2019;27(16):e743-e751. doi: 10.5435/JAAOS-D-17-00621.
  9. Jeyapalina S., Beck J.P., Drew A., Bloebaum R.D., Bachus K.N. Variation in bone response to the placement of percutaneous osseointegrated endoprostheses: a 24-month follow-up in sheep. PLoS One. 2019;14(10):e0221850. doi: 10.1371/journal.pone.0221850.
  10. Juhnke D.L., Aschoff H.H. [Endo-exo prostheses following limb-amputation]. Orthopade. 2015;44(6):419- 425. (In German). doi: 10.1007/s00132-015-3117-9.
  11. Tillander J., Hagberg K., Berlin Ö., Hagberg L., Brånemark R. Osteomyelitis risk in patients with transfemoral amputations treated with osseointegration prostheses. Clin Orthop Relat Res. 2017;475(12):3100- 3108. doi: 10.1007/s11999-017-5507-2.
  12. Bennett B.T., Beck J.P., Papangkorn K., Colombo J.S., Bachus K.N., Agarwal J. et al. Characterization and evaluation of fluoridated apatites for the development of infection-free percutaneous devices. Mater Sci Eng C Mater Biol Appl. 2019;100:665-675. doi: 10.1016/j.msec.2019.03.025.
  13. Fradique R., Correia T.R., Miguel S.P., de Sá K.D., Figueira D.R., Mendonça A.G., Correia I.J. Production of new 3D scaffolds for bone tissue regeneration by rapid prototyping. J Mater Sci Mater Med. 2016;27(4):69. doi: 10.1007/s10856-016-5681-x.
  14. Jeyapalina S., Mitchell S.J., Agarwal J., Bachus K.N. Biomimetic coatings and negative pressure wound therapy independently limit epithelial downgrowth around percutaneous devices. J Mater Sci Mater Med. 2019;30(6):71. doi: 10.1007/s10856-019-6272-4.
  15. Lennerås M., Tsikandylakis G., Trobos M., Omar O., Vazirisani F., Palmquist A. et al. The clinical, radiological, microbiological, and molecular profile of the skinpenetration site of transfemoral amputees treated with bone-anchored prostheses. J Biomed Mater Res A. 2017;105(2):578-589. doi: 10.1002/jbm.a.35935.
  16. Stenlund P., Trobos M., Lausmaa J., Brånemark R., Thomsen P., Palmquist A. Effect of load on the bone around bone-anchored amputation prostheses. J Orthop Res. 2017;35(5):1113-1122. doi: 10.1002/jor.23352.
  17. Tsikandylakis G., Berlin Ö., Brånemark R. Implant survival, adverse events, and bone remodeling of osseointegrated percutaneous implants for transhumeral amputees. Clin Orthop Relat Res. 2014;472(10):2947- 2956. doi: 10.1007/s11999-014-3695-6.
  18. Тихилов Р.М., Шубняков И.И., Коваленко А.Н., Билык С.С., Цыбин А.В., Денисов А.О. и др. Применение индивидуальной трехфланцевой конструкции при ревизионном эдопротезировании с нарушением целостности тазового кольца (клинический случай). Травматология и ортопедия России. 2016;(1):108-116. doi: 10.21823/2311-2905-2016-0-1-108-116.
  19. Chegurov O.K., Ovchinnikov E.N., Stogov M.V., Kolchev O.V., Shutov R.B., Gorodnova N.V. Design of individual components of the prosthesis for revision hip replacement. Biomed Eng. 2019;53(3):172-175. doi: 10.1007/s10527-019-09902-3.
  20. Ryu D.J., Ban H.Y., Jung E.Y., Sonn C.H., Hong D.H., Ahmad S. et al. Osteo-compatibility of 3D titanium porous coating applied by direct energy deposition (DED) for a cementless total knee arthroplasty implant: in vitro and in vivo study. J Clin Med. 2020;9(2):478. doi: 10.3390/jcm9020478.
  21. Innocenti M., Vieri B., Melani T., Paoli T., Carulli C. Metal hypersensitivity after knee arthroplasty: fact or fiction? Acta Biomed. 2017;88(2S):78-83. doi: 10.23750/abm.v88i2-S.6517.
  22. Kieser D.C., Ailabouni R., Kieser S.C.J., Wyatt M.C., Armour P.C., Coates M.H., Hooper G.J. The use of an Ossis custom 3D-printed tri-flanged acetabular implant for major bone loss: minimum 2-year follow-up. Hip Int. 2018;28(6):668-674. doi: 10.1177/1120700018760817.
  23. Bansal T., Aggarwal S., Dhillon M.S., Patel S. Gross trunnion failure in metal on polyethylene total hip arthroplasty- a systematic review of literature. Int Orthop. 2020;44(4):609-621. doi: 10.1007/s00264-019-04474-z.
  24. Koh J., Berger A., Benhaim P. An overview of internal fixation implant metallurgy and galvanic corrosion effects. J Hand Surg Am. 2015;40(8):1703-1710. doi: 10.1016/j.jhsa.2015.03.030.
  25. Rony L., Lancigu R., Hubert L. Intraosseous metal implants in orthopedics: a review. Morphologie. 2018;102(339):231- 242. doi: 10.1016/j.morpho.2018.09.003.
  26. Gorbach Е.N., Yemanov A.A., Ovchinnikov Е.N., Kuznetsov V.P., Fefelov A.S., Gorgots V.G. et al. Osseointegration of innovative customized implants in the tubular bone (experimental study). Sovremennye tehnologii v medicine. 2017;9(1):78-83. doi: 10.17691/stm2017.9.1.09.
  27. Hayes J.S., Klöppel H., Wieling R., Sprecher C.M., Richards R.G. Influence of steel implant surface microtopography on soft and hard tissue integration. J Biomed Mater Res B Appl Biomater. 2018;106(2):705-715. doi: 10.1002/jbm.b.33878.
  28. Тихилов Р.М., Шубняков И.И., Денисов А.О., Конев В.А., Гофман И.В., Михайлова П.М. и др. Костная и мягкотканная интеграция пористых титановых имплантатов (экспериментальное исследование). Травматология и ортопедия России. 2018;24(2):95- 107. doi: 10.21823/2311-2905-2018-24-2-95-107.
  29. Wong K.C., Kumta S.M., Geel N.V., Demol J. One-step reconstruction with a 3D-printed, biomechanically evaluated custom implant after complex pelvic tumor resection. Comput Aided Surg. 2015;20(1):14-23. doi: 10.3109/10929088.2015.1076039.
  30. Albrektsson T., Wennerberg A. On osseointegration in relation to implant surfaces. Clin Implant Dent Relat Res. 2019;21 Suppl 1:4-7. doi: 10.1111/cid.12742.
  31. Boyan B.D., Lotz E.M., Schwartz Z. Roughness and hydrophilicity as osteogenic biomimetic surface properties. Tissue Eng Part A. 2017;23(23-24):1479- 1489. doi: 10.1089/ten.TEA.2017.0048.
  32. Liu Y., Rath B., Tingart M., Eshweiler J. Role of implants surface modification in osseointegration: A systematic review. J Biomed Mater Res A. 2020;108(3):470-484. doi: 10.1002/jbm.a.36829.
  33. Nicolas-Silvente A.I., Velasco-Ortega E., Ortiz-Garcia I., Monsalve-Guil L., Gil J., Jimenez-Guerra A. Influence of the titanium implant surface treatment on the surface roughness and chemical composition. Materials (Basel). 2020;13(2):314. doi: 10.3390/ma13020314.
  34. Overmann A.L., Aparicio C., Richards J.T., Mutreja I., Fischer N.G., Wade S.M. et al. Orthopaedic osseointegration: implantology and future directions. J Orthop Res. 2019. doi: 10.1002/jor.24576. [Epub ahead of print].
  35. Eliaz N. Corrosion of metallic biomaterials: a review. Materials (Basel). 2019;12(3):407. doi: 10.3390/ma12030407.
  36. Dikici B., Esen Z., Duygulu O., Gungor S. Corrosion of metallic biomaterials. In: Niinomi M., Narushima T., Nakai M. (eds.). Advances in Metallic Biomaterials. Springer Series in Biomaterials Science and Engineering, vol. 3. Berlin, Heidelberg: Springer; 2015. p. 275-303. doi: 10.1007/978-3-662-46836-4_12.
  37. Gilbert J.L. Corrosion in the human body: metallic implants in the complex body environment. Corrosion. 2017;73(12):1478-1495. doi: 10.5006/2563.
  38. Utyuzh A.S., Samusenkov V.O., Yumashev A.V., Nefedova I.V., Tsareva T.V. Analysis of osseointegration adequacy and examination of stability of dental implants after sinus lift operation. Austrian J Tech Natural Sci. 2016;(5-6):16-19.

Statistics

Views

Abstract: 253

Dimensions

Article Metrics

Metrics Loading ...

PlumX


Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies