Morphological Changes in the Tibial Nerve During the Treatment of Large Tibia Defects Using Ilizarov Apparatus Combining with the Masquelet Technique: Experimental Study

Cover Page

Abstract

Background. The use of Masquelet technology in combination with non-free osteoplasty according to Ilizarov in order to compensate large defects of the lower leg bones provides proper bone union and recurrence-free course of the disease, but the problem of patient rehabilitation remains relevant. The course and duration of the recovery period depend on the morphofunctional state of the tibial nerves. The purpose of this study was to determine morphological changes in the tibia nerve of dogs during the experimental treatment of large tibial defects using Ilizarov apparatus combining with the Masquelet technique. Materials and Methods. A defect of the upper third of the tibia in the form of false joint was created in 10 mongrel dogs. Then this defect was replaced with 25 mm diastasis, into which a cement spacer was placed. After 30 days, the latter was removed. At the level of the lower third, transverse osteotomy was performed, as well as distraction of 1 mm rate for 4 times per day, until complete contact of the fragments in the defect zone. The tibial nerves were studied within the periods of 60 days of fixation (F60) and 30 days after the fixator removal (FR30). Results. There were no mechanical damages of the nerves. During the experiment a part of epineural veins and arteries had obliterated lumens, two-fold decrease in the numerical density of endoneural arterioles, venules and capillaries was observed in FR30 — 97.5±2.5 in 1 mm2 (normally — 182.0±22.0), that evidenced of microcirculatory disorders progressing towards the end of the experiment. Patterns of Wallerian degeneration were found along with typical damages to fibers during distraction osteosynthesis demyelination and axonal degeneration. In F60 the proportion of modified fibers was 7.7±1.5%, which was 4.8 times higher (р = 0.52×10-5) above normal, the numerical densities and dimensional characteristics of fibers decreased. At the end of the experiment, the proportion of modified conductors 2.3-fold exceeded the norm (p = 0.33×10-4) — 3.7±0.4%, the numerical density of fibers remained 10.2% below the norm (p = 0.0362), making up 17436±865, but the average axon diameter and thickness of myelin sheaths were restored. Conclusion. Microcirculatory dysfunction, axonal atrophy, demyelination, Wallerian degeneration of a part of myelin nerve fibers and a decrease in their number revealed in the tibial nerves during the treatment of large tibia defects using the Masquelet technique combining with Ilizarov non-free bone grafting indicated the need for the use of adequate neurometabolic pharmacotherapy and effective rehabilitation.

About the authors

T. N. Varsegova

National Ilizarov Medical Research Center of Traumatology and Orthopaedics

Author for correspondence.
Email: varstn@mail.ru
ORCID iD: 0000-0001-5430-2045

Tatiana N. Varsegova — Cand. Sci. (Biol.), Senior Researcher, Laboratory of Morphology

Kurgan

Russian Federation

O. V. Diuriagina

National Ilizarov Medical Research Center of Traumatology and Orthopaedics

Email: diuriagina@mail.ru
ORCID iD: 0000-0001-9974-2204

Olga V. Diuriagina — Cand. Sci. (Vet.), Head of Experimental Laboratory

Kurgan

Russian Federation

A. A. Emanov

National Ilizarov Medical Research Center of Traumatology and Orthopaedics

Email: a_eman@list.ru
ORCID iD: 0000-0003-2890-3597

Andrei A. Emanov — Cand. Sci. (Vet.), Leading Researcher, Experimental Laboratory

Kurgan

Russian Federation

D. S. Mokhovikov

National Ilizarov Medical Research Center of Traumatology and Orthopaedics

Email: mokhovikov_denis@mail.ru
ORCID iD: 0000-0002-9041-173X

Denis S. Mokhovikov — Cand. Sci. (Med.), Researcher, Head of Traumatology and Orthopaedics Department

Kurgan

Russian Federation

D. Yu. Borzunov

Ural State Medical University

Email: borzunov@bk.ru
ORCID iD: 0000-0003-3720-5467

Dmitrii Yu. Borzunov — Dr. Sci. (Med.), Assistant Professor, Department of Traumatology and Orthopaedics

Ekaterinburg

Russian Federation

References

  1. Тихилов Р.М., Кочиш А.Ю., Родоманова Л.А., Кутянов Д.И., Афанасьев А.О. Возможности современных методов реконструктивно-пластической хирургии в лечении больных с обширными посттравматическими дефектами тканей конечностей. Травматология и ортопедия России. 2011;60(2):164-170. doi: 10.21823/2311-2905-2011-0-2-164-170.
  2. Dou H., Wang G., Xing N., Zhang L. Repair of large segmental bone defects with fascial flap-wrapped allogeneic bone. J Orthop Surg Res. 2016;11(1):162. doi: 10.1186/s13018-016-0492-9.
  3. Mauffrey C., Hake M.E., Chadayammuri V., Masquelet A.C. Reconstruction of Long Bone Infections Using the Induced Membrane Technique: Tips and Tricks. J Orthop Trauma. 2016;30(6):e188-e193. doi: 10.1097/BOT.0000000000000500.
  4. Jin Z.C., Cai Q.B., Zeng Z.K., Li D., Li Y., Huang P.Z. et al. [Research progress on induced membrane technique for the treatment of segmental bone defect]. Zhongguo Gu Shang. 2018;31(5):488-492. (In Chinese). doi: 10.3969/j.issn.1003-0034.2018.05.018.
  5. Morelli I., Drago L., George D.A., Romanò D., Romanò C.L. Managing large bone defects in children: a systematic review of the ‘induced membrane technique’. J Pediatr Orthop B. 2018;27(5):443-455. doi: 10.1097/BPB.0000000000000456.
  6. Mathieu L., Bilichtin E., Durand M., de l’Escalopier N., Murison J.C., Collombet J.M. et al. Masquelet technique for open tibia fractures in a military setting. Eur J Trauma Emerg Surg. 2019. doi: 10.1007/s00068-019-01217-y. Epub ahead of print.
  7. Raven T.F., Moghaddam A., Ermisch C., Westhauser F., Heller R., Bruckner T. et al. Use of Masquelet technique in treatment of septic and atrophic fracture nonunion. Injury. 2019;50 Suppl 3:40-54. doi: 10.1016/j.injury.2019.06.018.
  8. Vidal L., Kampleitner C., Brennan M.Á., Hoornaert A., Layrolle P. Reconstruction of Large Skeletal Defects: Current Clinical Therapeutic Strategies and Future Directions Using 3D Printing. Front Bioeng Biotechnol. 2020;8:61. doi: 10.3389/fbioe.2020.00061.
  9. Masquelet A.C., Kishi T., Benko P.E. Very longterm results of post-traumatic bone defect reconstruction by the induced membrane technique. Orthop Traumatol Surg Res. 2019;105(1):159-166. doi: 10.1016/j.otsr.2018.11.012.
  10. Morwood M.P., Streufert B.D., Bauer A., Olinger C., Tobey D., Beebe M. et al. Intramedullary Nails Yield Superior Results Compared With Plate Fixation When Using the Masquelet Technique in the Femur and Tibia. J Orthop Trauma. 2019;33(11):547-552. doi: 10.1097/BOT.0000000000001579.
  11. Борзунов Д.Ю., Соколова М.Н. Методические принципы замещения дефектов костей предплечья с использованием технологии чрескостного остеосинтеза. Травматология и ортопедия России. 2010;57(3):102-111. doi: 10.21823/2311-2905-2010-0-3-103-110.
  12. Masquelet A.C., Obert L. [Induced membrane technique for bone defects in the hand and wrist]. Chir Main. 2010;29 Suppl 1:S221-S224. (In French). doi: 10.1016/j.main.2010.10.007.
  13. Masquelet A.C., Begue T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am. 2010;41(1):27-37. doi: 10.1016/j.ocl.2009.07.011.
  14. Karger C., Kishi T., Schneider L., Fitoussi F., Masquelet A.C. Treatment of posttraumatic bone defects by the induced membrane technique. Orthop Traumatol Surg Res. 2012;98(1):97-102. doi: 10.1016/j.otsr.2011.11.001.
  15. Krappinger D., Irenberger A., Zegg M., Huber B. Treatment of large posttraumatic tibial bone defects using the Ilizarov method: a subjective outcome assessment. Arch Orthop Trauma Surg. 2013;133(6):789-795. doi: 10.1007/s00402-013-1712-y.
  16. Chimutengwende-Gordon M., Mbogo A., Khan W., Wilkes R. Limb reconstruction after traumatic bone loss. Injury. 2017; 48(2):206-213. doi: 10.1016/j.injury.2013.11.022.
  17. Tong K., Zhong Z., Peng Y., Lin C., Cao S., Yang Y. et al. Masquelet technique versus Ilizarov bone transport for reconstruction of lower extremity bone defects following posttraumatic osteomyelitis. Injury. 2017;48(7):16161622. doi: 10.1016/j.injury.2017.03.042.
  18. Durand M., Barbier L., Mathieu L., Poyot T., Demoures T., Souraud J.B. et al. Towards Understanding Therapeutic Failures in Masquelet Surgery: First Evidence that Defective Induced Membrane Properties are Associated with Clinical Failures. J Clin Med. 2020;9(2):450. doi: 10.3390/jcm9020450.
  19. Барабаш А.П., Кесов Л.А., Барабаш Ю.А., Шпиняк С.П. Замещение обширных диафизарных дефектов длинных костей конечностей. Травматология и ортопедия России. 2014;72(2):93-99.
  20. Шаталин А.Е., Бобров М.И., Митрофанов В.Н., Королев С.Б. Техника Masqelet при замещении дефектов костей предплечья в условиях гнойной хирургической инфекции. Архив клинической и экспериментальной медицины. 2018;27(3):72-77.
  21. Cui T., Li J., Zhen P., Gao Q., Fan X., Li C. Masquelet induced membrane technique for treatment of rat chronic osteomyelitis. Exp Ther Med. 2018;16(4):30603064. doi: 10.3892/etm.2018.6573.
  22. Wang J., Yin Q., Gu S., Wu Y., Rui Y. Induced membrane technique in the treatment of infectious bone defect: A clinical analysis. Orthop Traumatol Surg Res. 2019;105(3):535-539. doi: 10.1016/j.otsr.2019.01.007.
  23. Morelli I., Drago L., George D.A., Gallazzi E., Scarponi S., Romanò C.L. Masquelet technique: myth or reality? A systematic review and metaanalysis. Injury. 2016;47 Suppl 6:S68-S76. doi: 10.1016/S0020-1383(16)30842-7.
  24. Taylor B.C., French B.G., Fowler T.T., Russell J., Poka A. Induced membrane technique for reconstruction to manage bone loss. J Am Acad Orthop Surg. 2012;20(3):142-150. doi: 10.5435/JAAOS-20-03-142.
  25. Masquelet A.C. Induced Membrane Technique: Pearls and Pitfalls. J Orthop Trauma. 2017;31 Suppl 5:S36-S38. doi: 10.1097/BOT.0000000000000979.
  26. Masquelet A., Kanakaris N.K., Obert L., Stafford P., Giannoudis P.V. Bone Repair Using the Masquelet Technique. J Bone Joint Surg Am. 2019;101(11):10241036. doi: 10.2106/JBJS.18.00842.
  27. Konda S.R., Gage M., Fisher N., Egol K.A. Segmental Bone Defect Treated With the Induced Membrane Technique. J Orthop Trauma. 2017;31 Suppl 3:S21-S22. doi: 10.1097/BOT.0000000000000899.
  28. Aurégan J.C., Bégué T., Rigoulot G., Glorion C., Pannier S. Success rate and risk factors of failure of the induced membrane technique in children: a systematic review. Injury. 2016;47 Suppl 6:S62-S67. doi: 10.1016/S0020-1383(16)30841-5.
  29. Morris R., Hossain M., Evans A., Pallister I. Induced membrane technique for treating tibial defects gives mixed results. Bone Joint J. 2017;99-B(5):680-685. doi: 10.1302/0301-620X.99B5.BJJ-2016-0694.R2.
  30. Giotikas D., Tarazi N., Spalding L., Nabergoj M., Krkovic M. Results of the Induced Membrane Technique in the Management of Traumatic Bone Loss in the Lower Limb: A Cohort Study. J Orthop Trauma. 2019;33(3):131-136. doi: 10.1097/BOT.0000000000001384.
  31. El-Hadidi T.T., Soliman H.M., Farouk H.A., Radwan M.A.E. Staged bone grafting for the management of segmental long bone defects caused by trauma or infection using induced-membrane technique. Acta Orthop Belg. 2018;84(4):384-396.
  32. Кутиков С.А., Lettreuch A.R., Saighi-Bouaouina A., Борзунов Д.Ю., Дьячкова Г.В. Врожденный ложный сустав голени. Проблемы, возможные варианты решения. Гений ортопедии. 2014;(3):24-30.
  33. Борзунов Д.Ю., Горбач Е.Н., Моховиков Д.С., Колчин С.Н. Комбинированные костнопластические вмешательства при реабилитации пациентов с врожденным ложным суставом костей голени. Гений ортопедии. 2019;25(3):318-323. doi: 10.18019/1028-4427-2019-25-3-304-311
  34. Pelissier P., Boireau P., Martin D., Baudet J. Bone reconstruction of the lower extremity: complications and outcomes. Plast Reconstr Surg. 2003;111(7):22232229. doi: 10.1097/01.PRS.0000060116.21049.53.
  35. Althagafi A., Nadi M. Acute Nerve Injury. [Updated 2020 Aug 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK549848/.
  36. Burnett M.G., Zager E.L. Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus. 2004;16(5):E1. doi: 10.3171/foc.2004.16.5.2.
  37. Щудло М.М., Щудло Н.А., Варсегова Т.Н., Борисова И.В. Реакция нервов на растяжение и их структурная адаптация к удлинению конечности. Гений ортопедии. 2009;(4):48-55.
  38. Yamagishi Y., Samukawa M., Kuwahara M., Takada K., Saigoh K., Mitsui Y. et al. Charcot-Marie-Tooth disease with a mutation in FBLN5 accompanying with the small vasculitis and widespread onionbulb formations. J Neurol Sci. 2020;410:116623. doi: 10.1016/j.jns.2019.116623.
  39. Wang A.P., Catana D., Provias J.P., Reddy K.K.V. Hypertrophic Interstitial Neuropathy of the Trigeminal Nerve: Case Report and Literature Review. Neurosurgery. 2020;87(1):E41-E47. doi: 10.1093/neuros/nyz418.

Statistics

Views

Abstract: 238

Dimensions

Article Metrics

Metrics Loading ...

PlumX


Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies