Assessment of Acetabulum Deformity During Preoperative Planning for Hip Arthroplasty

Cover Page

Abstract

Purpose of the study — to improve the two-dimensional planning of total hip joint arthroplasty to ensure precise positioning of the acetabular component in the deformed acetabulum. Materials and methods. Features of roentgenological anatomy of acetabulum and its coverage were studied on 1058 hip joint x-rays in the AP view in accordance with the procedure developed by the authors to define acetabular square — the site of standard positioning of a spherical femoral head in the acetabulum or of a hemispherical acetabular component. The method consisted of identifying the apex of “teardrop” figure; the most lateral points of the pelvic terminal line and roof of the acetabulum; superior part of the acetabular cavity; medial and inferior points of acetabular coverage, and building the sides of acetabular square — medial, inferior, lateral and superior boundary lines. Connection of “teardrop” apex and lateral point of the pelvic terminal line formed the medial side of acetabular square, and a perpendicular to that line drawn through the “teardrop” apex to its inferior side. The lateral side was drawn either through the intersection of the ascending diagonal line — bisector from the top of the “teardrop” figure with the contour of the acetabulum roof, or was a part of the projection of the most lateral point of the acetabular roof on the inferior side of the square. The superior side was a perpendicular connecting the intersection of the ascending diagonal and lateral bounding lines with the medial side of the acetabular square. The area of the deformed acetabular cavity located outside of the acetabular square was assessed as the acetabular defect. Results. Method of defining the acetabular square allowed to identify types of ratios between acetabular cavity and acetabular coverage in transverse (9 types) and longitudinal (7 types) direction. Combination of transverse ratio of acetabular cavity and coverage with longitudinal type allowed to define the options of acetabular deformities in two-dimensional view. The authors identified 25 types of acetabular deformities. Bone defects of acetabular walls were of the major importance among all anatomical features. Cranial defect of acetabulum was observed in 450 cases, medial wall defect — in 38 cases, defect including cranial and medial areas — in 7 cases. Conclusion. The method suggested by the authors to determine acetabular square and acetabular deformity variations allows to screen the anatomical features of the acetabulum during two-dimensional preoperative planning and to make an informed decision on the need to use other planning techniques. The type of acetabular deformity identified during preoperative planning allows to elaborate the indications for replacement of acetabular bone defects and/or resection of acetabular osteophytes.

About the authors

D. V. Martynenko

Moscow Regional Research and Clinical Institute (MONIKI)

Author for correspondence.
Email: ant0708@yandex.ru

Cand. Sci. (Med.), Associate professor, Course of Traumatology and Orthopedics, Postgraduate Training Faculty

Moscow

Russian Federation

V. P. Voloshin

Moscow Regional Research and Clinical Institute (MONIKI)

Email: fake@neicon.ru

Dr. Sci. (Med.), Professor, Head of the Department of Traumatology and Orthopedics; Head of Course of Traumatology and Orthopedics, Postgraduate Training Faculty

Moscow

Russian Federation

L. A. Sherman

Moscow Regional Research and Clinical Institute (MONIKI)

Email: fake@neicon.ru

Cand. Sci. (Med.), Associate Professor, Course of Radiology, Postgraduate Training Faculty

Moscow

Russian Federation

K. V. Shevyrev

Moscow Regional Research and Clinical Institute (MONIKI)

Email: fake@neicon.ru

Cand. Sci. (Med.), Leading Researcher of the Department of Traumatology and Orthopedics

Moscow

Russian Federation

S. A. Oshkukov

Moscow Regional Research and Clinical Institute (MONIKI)

Email: fake@neicon.ru

Cand. Sci. (Med.), Researcher, Department of Traumatology and Orthopedics

Moscow

Russian Federation

E. V. Stepanov

Moscow Regional Research and Clinical Institute (MONIKI)

Email: fake@neicon.ru

Researcher, Department of Traumatology and Orthopedics

Moscow

Russian Federation

References

  1. Zeng W.-N., Liu J.-L., Jia X.-L., Zhou Q., Yang L., Zhang Y. Midterm Results of Total Hip Arthroplasty in Patients With High Hip Dislocation After Suppurative Hip Arthritis. J Arthroplasty. 2019;34(1):102-107. doi: 10.1016/J.ARTH.2018.09.081.
  2. Ling T.-X., Li J.-L., Zhou K., Xiao Q., Pei F.-X., Zhou Z.-K. The Use of Porous Tantalum Augments for the Reconstruction of Acetabular Defect in Primary Total Hip Arthroplasty. J Arthroplasty. 2018;33(2):453-459. doi: 10.1016/J.ARTH.2017.09.030.
  3. Zha G.-C., Sun J.-Y., Guo K.-J., Zhao F.-C., Pang Y., Zheng X. Medial Protrusio Technique in Cementless Total Hip Arthroplasty for Developmental Dysplasia of the Hip: A Prospective 6- to 9-Year Follow-Up of 43 Consecutive Patients. J Arthroplasty. 2016;31(8):1761-1766. doi: 10.1016/J.ARTH.2016.01.052.
  4. Eskildsen S.M., Wilson Z.J., McNabb D.C., Olcott C.W., Del Gaizo D.J. Acetabular Reconstruction With the Medial Protrusio Technique for Complex Primary and Revision Total Hip Arthroplasties. J Arthroplasty. 2017; 32(11):3474-3479. doi: 10.1016/J.ARTH.2017.05.037.
  5. Greber E.M., Pelt C.E., Gililland J.M., Anderson M.B., Erickson J.A., Peters C.L. Challenges in Total Hip Arthroplasty in the Setting of Developmental Dysplasia of the Hip. J Arthroplasty. 2017;32(9):S38-S44. doi: 10.1016/J.ARTH.2017.02.024.
  6. Montalti M., Castagnini F., Giardina F., Tassinari E., Biondi F., Toni A. Cementless Total Hip Arthroplasty in Crowe III and IV Dysplasia: High Hip Center and Modular Necks. J Arthroplasty. 2018; 33(6):1813-1819. doi: 10.1016/J.ARTH.2018.01.041.
  7. Galea V.P., Laaksonen I., Donahue G.S., Fukui K., Kaneuji A., Malchau H., Bragdon C. Developmental Dysplasia Treated With Cementless Total Hip Arthroplasty Utilizing High Hip Center Reconstruction: A Minimum 13-Year Follow-up Study. J Arthroplasty. 2018;33(9):2899-2905. doi: 10.1016/j.arth.2018.04.037.
  8. Berninger M.T., Hungerer S., Friederichs J., Stuby F.M., Fulghum C., Schipp R. Primary Total Hip Arthroplasty in Severe Dysplastic Hip Osteoarthritis With a Far Proximal Cup Position. J Arthroplasty. 2019;34(5): 920-925. doi: 10.1016/J.ARTH.2019.01.032.
  9. Komiyama K., Nakashima Y., Hirata M., Hara D., Kohno Y., Iwamoto Y. Does High Hip Center Decrease Range of Motion in Total Hip Arthroplasty? A Computer Simulation Study. J Arthroplasty. 2016;31(10):2342-2347. doi: 10.1016/J.ARTH.2016.03.014.
  10. Rowan F.E., Benjamin B., Pietrak J.R., Haddad F.S. Prevention of Dislocation After Total Hip Arthroplasty. J Arthroplasty. 2018;33(5):1316-1324. doi: 10.1016/J.ARTH.2018.01.047.
  11. Karaismailoglu B., Erdogan F., Kaynak G. High Hip Center Reduces the Dynamic Hip Range of Motion and Increases the Hip Load: A Gait Analysis Study in Hip Arthroplasty Patients With Unilateral Developmental Dysplasia. J Arthroplasty. 2019;34(6):1267-1272. doi: 10.1016/J.ARTH.2019.02.017.
  12. Кавалерский Г.М., Середа А.П., Мурылев В.Ю., Рукин Я.А., Гаврилов А.В., Архипов И.В. и др. 2D-планирование эндопротезирования тазобедренного сустава. Травматология и ортопедия России. 2015;(4):95-102. doi: 10.21823/2311-2905-2015-0-4-95-102.
  13. Widmer D., Reising K., Kotter E., Helwig P. Correct Assessment of Acetabular Component Orientation in Total Hip Arthroplasty From Plane Radiographs. J Arthroplasty. 2018;33(8):2652-2659. doi: 10.1016/J.ARTH.2018.02.023.
  14. Ranawat C. S., Dorr L. D., Inglis A. E. Total hip arthroplasty in protrusio acetabuli of rheumatoid arthritis. J Bone Joint Surgery Am. 1980;62(7):1059-1065.
  15. Chen M., Luo Z.-L., Wu K.-R., Zhang X.-Q., Ling X.- D., Shang X.-F. Cementless Total Hip Arthroplasty With a High Hip Center for Hartofilakidis Type B Developmental Dysplasia of the Hip: Results of Midterm Follow-Up. J Arthroplasty. 2016;31(5):1027-1034. doi: 10.1016/J.ARTH.2015.11.009.
  16. Watts C.D., Martin J.R., Fehring K.A., Griffin W.L. Inferomedial Hip Center Decreases Failure Rates in Cementless Total Hip Arthroplasty for Crowe II and III Hip Dysplasia. J Arthroplasty. 2018;33(7):2177-2188. doi: 10.1016/J.ARTH.2018.02.039.
  17. Nam D., Riegler V., Clohisy J.C., Nunley R.M., Barrack R.L. The Impact of Total Hip Arthroplasty on Pelvic Motion and Functional Component Position is Highly Variable. J Arthroplasty. 2017;32(4):1200-1205. doi: 10.1016/J.ARTH.2016.11.008.
  18. Xu J., Qu X., Li H., Mao Y., Yu D., Zhu Z. Three-Dimensional Host Bone Coverage in Total Hip Arthroplasty for Crowe Types II and III Developmental Dysplasia of the Hip. J Arthroplasty. 2017;32(4):1374-1380. doi: 10.1016/j.arth.2016.11.017.
  19. Ogawa H., Hasegawa S., Tsukada S., Matsubara M. A Pilot Study of Augmented Reality Technology Applied to the Acetabular Cup Placement During Total Hip Arthroplasty. J Arthroplasty. 2018;33(6):1833-1837. doi: 10.1016/j.arth.2018.01.067.
  20. Ueno T., Kabata T., Kajino Y., Ohmori T., Yoshitani J., Tsuchiya H. Three-Dimensional Host Bone Coverage Required in Total Hip Arthroplasty for Developmental Dysplasia of the Hip and Its Relationship With 2-Dimensional Coverage. J Arthroplasty. 2019;34(1):93-101. doi: 10.1016/j.arth.2018.09.082.
  21. O sawa Y., Hasegawa Y., Okura T., Morita D., Ishiguro N. Total Hip Arthroplasty After Periacetabular and Intertrochanteric Valgus Osteotomy. J Arthroplasty. 2017;32(3):857-861. doi: 10.1016/J.ARTH.2016.08.023.
  22. Садовой М.А., Павлов В.В., Базлов В.А., Мамуладзе Т.З., Ефименко М.В., Аронов А.М., Панченко А.А. Возможности 3d-визуализации дефектов вертлужной впадины на этапе предоперационного планирования первичного и ревизионного эндопротезирования тазобедренного сустава. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2017;3:37-42.

Statistics

Views

Abstract: 555

Dimensions

Article Metrics

Metrics Loading ...

PlumX


Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies