Comparison of Nitinol and Titanium Nails Effectiveness for Lumbosacral Spine Fixation in Surgical Treatment of Degenerative Spine Diseases

Cover Page

Abstract

Relevance. Surgical decompression and decompression with stabilization are highly effective for treatment of spinal canal stenosis at the level of lumbar spine. However, complications developing after application of rigid fixation systems resulted in active introduction of dynamic implants into clinical practice.

Purpose of the study — to compare effectiveness of nitinol and titanium nails for lumbosacral fixation in surgical treatment of degenerative spine diseases.

Materials and methods. 220 patients who underwent surgeries in 4 hospitals were randomized into two groups, each consisting of 110 patients (1:1 ratio): a group of patients who underwent stabilization of the vertebral motor segments with rods of nitinol with the required volume of decompression at the operation level and a group of patients who underwent stabilization of the vertebral motor segments with standard rods of titanium with the required volume of decompression at the intervention level. Patients suffered clinically significant spinal canal stenosis in one or two adjacent segments: from L3 to S1. Outcomes were evaluated during three years postoperatively by VAS scale for spine and lower limbs, and by ODI and SF-36 scales.

Results. All scales demonstrated better values in both groups of patients, namely, significant decrease of pain syndrome and improvement in mental and physical health. X-ray examination of all patients during the study period demonstrated restoration of lumbar lordosis. Group of patients with dynamic nails featured less complications rate related to metal implants including adjacent segment disease.

Conclusion. Transpedicular fixation of lumbosacral spine by nitinol nails is an effective technique allowing to preserve motion along with stable fixation.

About the authors

S. V. Kolesov

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: fake@neicon.ru

Sergey V. Kolesov — Dr. Sci. (Med.), professor, the head of Spinal Pathology Department

Moscow

Russian Federation

A. I. Kazmin

Priorov National Medical Research Center of Traumatology and Orthopedics

Author for correspondence.
Email: kazmin.cito@mail.ru

Arkady I. Kazmin — cand. Sci. (Med.), orthopedic surgeon, Spinal Pathology Department,

Moscow

Russian Federation

V. V. Shvets

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: fake@neicon.ru

Vladimir V. Shvets — Dr. Sci. (Med.), leading research fellow, Spinal Pathology Department

Moscow

Russian Federation

A. O. Gushcha

Research Center of Neurology

Email: fake@neicon.ru

Artem O. Gushcha — Dr. Sci. (Med.), the head of Department of Neurosurgery

Moscow

Russian Federation

E. N. Poltorako

Research Center of Neurology

Email: fake@neicon.ru

Ekaterina N. Poltorako — neurosurgeon, Department of Neurosurgery

Moscow

Russian Federation

I. V. Basankin

Scientific Research Institute – Ochapovsky Regional Clinical Hospital No. 1

Email: fake@neicon.ru

Igor V. Basankin — cand. Sci. (Med.), the head of Department of Neurosurgery

Krasnodar

Russian Federation

A. E. Krivoshein

Omsk State Medical University

Email: fake@neicon.ru

Artem E. Krivoshein — cand. Sci. (Med.), assistant, Department of Traumatology and Orthopedics

Omsk

Russian Federation

K. M. Bukhtin

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: fake@neicon.ru

Kirill M. Bukhtin — cand. Sci. (Med.), scientific secretary

Moscow

Russian Federation

A. A. Panteleev

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: fake@neicon.ru

Andrey A. Panteleev — doctor, Department of Spine Pathology

Moscow

Russian Federation

M. L. Sazhnev

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: fake@neicon.ru

Maxim L. Sazhnev — cand. Sci. (Med.), doctor, Department of Spine Pathology

Moscow

Russian Federation

V. S. Pereverzev

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: fake@neicon.ru

Vladimir S. Pereverzev — doctor, Department of Spine Pathology

Moscow

Russian Federation

References

  1. Dowdell J., Erwin M., Choma T., Vaccaro A., Iatridis J., Cho S.K. Intervertebral disk degeneration and repair. Neurosurgery. 2017;80(3S):S46-S54. doi: 10.1093/neuros/nyw078.
  2. Deyo R., Mirza S.K., Martin B.I., Kreuter W., Goodman D.C., Jarvik J.G. Trends, major medical complications, and charges associated with surgery for lumbar spinal stenosis in older adults. JAMA. 2010;303(13):1259-65. doi: 10.1001/jama.2010.338.
  3. Du Bois M., Szpalski M., Donceel P. A decade’s experience in lumbar spine surgery in Belgium: Sickness fund beneficiaries, 2000-2009. Eur Spine J. 2012;21(12):2693-703. doi: 10.1007/s00586-012-2381-1.
  4. Burnett M.G., Stein S.C., Bartels R.H. Cost-effectiveness of current treatment strategies for lumbar spinal stenosis: nonsurgical care, laminectomy, and x-SToP. J Neurosurg Spine.2010;13(1):39-46. doi: 10.3171/2010.3.SPINe09552.
  5. Weinstein J.N., Tosteson T.D., Lurie J.D., Tosteson A., Blood E., Herkowitz H. et al. Surgical versus nonoperative treatment for lumbar spinal stenosis fouryear results of the Spine Patient outcomes Research Trial. Spine (Phila Pa 1976). 2010;35(14):1329-1338. doi: 10.1097/BRS.0b013e3181e0f04d.
  6. Davis R.J., Errico T.J., Bae H., Auerbach J.D. Decompression and coflex interlaminar stabilization compared with decompression and instrumented spinal fusion for spinal stenosis and low-grade degenerative spondylolisthesis: Two-year results from the prospective, randomized, multicenter, food and drug. Spine (Phila Pa 1976). 2013;38(18):1529-1539. doi: 10.1097/BRS.0b013e31829a6d0a.
  7. Schmidt S., Franke J., Rauschmann M., Adelt D., Bonsanto M.M., Sola S. Prospective, randomized, multicenter study with 2-year follow-up to compare the performance of decompression with and without interlaminar stabilization.J Neurosurg Spine. 2018;28(4):406-415. doi: 10.3171/2017.11.SPINe17643.
  8. Försth P., Ólafsson G., Carlsson T., Frost A., Borgström F., Fritzell P., Öhagen P., Michaëlsson K., Sandén B. A randomized, controlled trial of fusion surgery for lumbar spinal stenosis. N Engl J Med. 2016;374(15):1413-1423. doi: 10.1056/NejMoa1513721.
  9. Ghogawala Z., Dziura J., Butler W.E., Dai F., Terrin N., Magge S.N., Coumans J.V., Harrington J.F., Amin-Hanjani S., Schwartz J.S., Sonntag V.K., Barker F.G., Benzel E.C. Laminectomy plus fusion versus laminectomy alone for lumbar Spondylolisthesis. N Engl J Med. 2016;374(15):1424-1434. doi: 10.1056/NejMoa1508788.
  10. Sigmundsson F.G., Jönsson B., Strömqvist B. Outcome of decompression with and without fusion in spinal stenosis with degenerative spondylolisthesis in relation to preoperative pain pattern: a register study of 1,624 patients. Spine J. 2015;15(4):638-646. doi: 10.1016/j.spinee.2014.11.020.
  11. Röder C., Baumgärtner B., Berlemann U., Aghayev E. Superior outcomes of decompression with an interlaminar dynamic device versus decompression alone in patients with lumbar spinal stenosis and back pain: a cross registry study. Eur Spine J. 2015;24(10):2228-2235. doi: 10.1007/s00586-015-4124-6.
  12. Kim H.J., Jeong J.H., Cho H.G., Chang B.S., Lee C.K., Yeom J.S. Comparative observational study of surgical outcomes of lumbar foraminal stenosis using minimally invasive microsurgical extraforaminal decompression alone versus posterior lumbar interbody fusion: a prospective cohort study. Eur Spine J. 2015;24(2):388-395. doi: 10.1007/s00586-014-3592-4.
  13. Omidi-Kashani F., Hasankhani E.G., Ashjazadeh A. Lumbar spinal stenosis: who should be fused? an updated review. Asian Spine J. 2014;8(4):521-530. doi: 10.4184/asj.2014.8.4.521.
  14. Rienmüller A.C., Krieg S.M., Schmidt F.A., Meyer E.L., Meyer B. Reoperation rates and risk factors for revision 4 years after dynamic stabilization of the lumbar spine. Spine J. 2019;19(1):113-120. doi: 10.1016/j.spinee.2018.05.025.
  15. Matsuoka Y., Endo K., Suzuki H., Sawaji Y., Nishimura H., Takamatsu T. et al. Postoperative radiographic early-onset adjacent posterior lumbar interbody fusion in patients without preoperative severe sagittal spinal imbalance. Asian Spine J. 2018;12(4):743-748. doi: 10.31616/asj.2018.12.4.743.
  16. Tu J., Hua W., Li W., Liu W., Luo R., Li S. et al. Short-term effects of minimally invasive dynamic neutralization system for the treatment of lumbar spinal stenosis: an observational study. Medicine (Baltimore). 2018;97(22):e10854. doi: 10.1097/MD.0000000000010854.
  17. Cawley D.T., Alexander M., Morris S. Multifidus innervation and muscle assessment post-spinal surgery. Eur Spine J. 2014;23(2):320-327. doi: 10.1007/s00586-013-2962-7.
  18. Malakoutian M., Street J., Wilke H.J., Stavness I., Dvorak M., Fels S., Oxland T. Role of muscle damage on loading at the level adjacent to a lumbar spine fusion: a biomechanical analysis. Eur Spine J. 2016;25(9):2929-2937. doi: 10.1007/s00586-016-4686-y.
  19. Колесов С.В., Колбовский Д.А., Казьмин А.И., Морозова Н.С. Применение стержней из нитинола при хирургическом лечении дегенеративных заболеваний позвоночника с фиксацией пояснично-крестцового перехода. Хирургия позвоночника. 2016:13(1): 41-49. doi: 10.14531/ss2016.1.41-49.
  20. Parker S.L., Adogwa O., Paul A.R., Anderson W.N., Aaronson O., Cheng J.S., Mcgirt M.J. Utility of minimum clinically important difference in assessing pain, disability, and health state after transforaminal lumbar interbody fusion for degenerative lumbar spondylolisthesis. J Neurosurg Spine. 2011;14(5):598-604. doi: 10.3171/2010.12.SPINe10472.
  21. Fairbank J.C., Pynsent P.B. The oswestry disability index. Spine (Phila Pa 1976). 2000;25(22):2940-2952.
  22. Chung A.S., Copay A.G., Olmscheid N., Campbell D., Walker J.B., Chutkan N. Minimum clinically important difference: current trends in the spine literature. Spine (Phila Pa 1976). 2017;42(14):1096-1105. doi: 10.1097/BRS.0000000000001990.
  23. Ghogawala Z., Resnick D.K., Watters W.C. 3rd , Mummaneni P.V., Dailey A.T., Choudhri T.F. et al. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 2: assessment of functional outcome following lumbar fusion. J Neurosurg Spine. 2014;21(1):7-13. doi: 10.3171/2014.4.SPINe14258.
  24. Elsayed G., Erwood M.S., Davis M.C., Dupépé E.C., Mcclugage S.G., Szerlip P. et al. association between preoperative activity level and functional outcome at 12 months following surgical decompression for lumbar spinal stenosis. J Neurosurg Spine. 2018;29(4):388-396. doi: 10.3171/2018.2.SPINe171028.
  25. Mcgirt M.J., Parker S.L., Hilibrand A., Mummaneni P., Glassman S.D., Devin C.J., Asher A.L. Lumbar surgery in the elderly provides significant health benefit in the uS health care system: Patient-reported outcomes in 4370 patients from the N2QoD registry. Neurosurgery. 2015;77 Suppl 4:S125-135. doi: 10.1227/Neu.0000000000000952.
  26. Puvanesarajah V., Werner B.C., Cancienne J.M., Jain A., Pehlivan H., Shimer A.L. et al. Morbid obesity and lumbar fusion in patients older than 65 years: complications, readmissions, costs, and length of stay. Spine (Phila Pa 1976). 2017;42(2):122-127. doi: 10.1097/BRS.0000000000001692.
  27. Sengupta D.K., Herkowitz H.N. Degenerative spondylolisthesis: review of current trends and controversies. Spine (Phila Pa 1976). 2005;30(6 Suppl):S71-81.
  28. Herkowitz H.N. Degenerative lumbar spondylolisthesis: a surgeon’s perspective of 30 years in practice. Spine J. 2010;10(10):916-917. DOI: 10.1016/j. spinee.2010.08.026.
  29. Watters W.C. 3rd , Bono C.M., Gilbert T.J., Kreiner D.S., Mazanec D.J., Shaffer W.O. et al. An evidence-based clinical guideline for the diagnosis and treatment of degenerative lumbar spondylolisthesis. Spine J. 2009;9(7):609-614. doi: 10.1016/j.spinee.2009.03.016.
  30. Sudo H., Oda I., Abumi K., Ito M., Kotani Y., Minami A. Biomechanical study on the effect of five different lumbar reconstruction techniques on adjacent-level intradiscal pressure and lamina strain. J Neurosurg Spine. 2006;5(2):150-155. doi: 10.3171/spi.2006.5.2.150.
  31. Deyo R.A., Mirza S.K. Trends and variations in the use of spine surgery. Clin Orthop Relat Res. 2006;443:139-146. doi: 10.1097/01.blo.0000198726.62514.75.
  32. Кривошеин А.Е., Конев В.П., Колесов С.В., Бывальцев В.А., Казьмин А.И. Сравнительный анализ изменений десмальных и хрящевых структур позвоночно-двигательного сегмента при различных способах задней фиксации позвоночника в эксперименте. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2017;(4):25-30. doi: 10.32414/0869-8678-2017-4-25-30.
  33. Försth P., Michaëlsson K., Sandén B. Does fusion improve the outcome after decompressive surgery for lumbar spinal stenosis? atwo-year follow-up study involving 5390 patients. Bone Joint J. 2013;95-B(7):960-965. doi: 10.1302/0301-620x.95B7.30776.
  34. Schaeren S., Broger I., Jeanneret B. Minimum fouryear follow-up of spinal stenosis with degenerative spondylolisthesis treated with decompression and dynamic stabilization. Spine (Phila Pa 1976). 2008;33(18): e636-642. doi: 10.1097/BRS.0b013e31817d2435.
  35. Prud’Homme M., Barrios C., Rouch P., Charles Y.P., Steib J.P., Skalli W. Clinical outcomes and complications after pedicle-anchored dynamic or hybrid lumbar spine stabilization a systematic literature review. J Spinal Disord Tech. 2015;28(8):e439-e448. doi: 10.1097/BSD.0000000000000092.
  36. Hoppe S., Schwarzenbach O., Aghayev E., Bonel H., Berlemann U. Long-term outcome after monosegmental l4/5 stabilization for degenerative spondylolisthesis with the dynesys device. Clin Spine Surg.2016;29(2): 72-77. doi: 10.1097/BSD.0b013e318277ca7a.
  37. Ghiselli G., Wang J.C., Bhatia N.N., Hsu W.K., Dawson E.G. Adjacent segment degeneration in the lumbar spine. J Bone Joint Surg Am.2004;86(7):1497-1503.
  38. Oikonomidis S., Ashqar G., Kaulhausen T., Herren C., Siewe J., Sobottke R. Clinical experiences with a PeeKbased dynamic instrumentation device in lumbar spinal surgery: 2 years and no more. J Orthop Surg Res. 2018;13(1):196. doi: 10.1186/s13018-018-0905-z.
  39. Videbaek T.S., Egund N., Christensen F.B., Grethe Jurik A., Bünger C.E. Adjacent segment degeneration after lumbar spinal fusion: the impact of anterior column support: a randomized clinical trial with an eight- to thirteen-year magnetic resonance imaging followup. Spine (Phila Pa 1976). 2010;35(22):1955-1964. doi: 10.1097/BRS.0b013e3181e57269.
  40. Cheh G., Bridwell K.H., Lenke L.G., Buchowski J.M., Daubs M.D., Kim Y., Baldus C. Adjacent segment disease followinglumbar/thoracolumbar fusion with pedicle screw instrumentation: a minimum 5-year follow-up. Spine (Phila Pa 1976). 2007;32(20):2253-2257. doi: 10.1097/BRS.0b013e31814b2d8e
  41. Lee C.S., Hwang C.J., Lee S.W., Ahn Y.J., Kim Y.T., Lee D.H., Lee M.Y. Risk factors for adjacent segment disease after lumbar fusion. Eur Spine J.2009;18(11):1637-1643. doi: 10.1007/s00586-009-1060-3.
  42. Herren C., Sobottke R., Pishnamaz M., Scheyerer M.J., Bredow J., Westermann L. et al. The use of the DToTM hybrid dynamic device : a clinical outcome- and radiological-based prospective clinical trial. BMC Musculoskelet Disord. 2018;19(1):199. doi: 10.1186/s12891-018-2103-x.
  43. Kobayashi K., Ando K., Kato F., Kanemura T., Sato K., Hachiya Y. et al. Reoperation within 2 years after lumbar interbody fusion: a multicenter study. Eur Spine J. 2018;27(8):1972-1980. doi: 10.1007/s00586-018-5508-1.
  44. Imagama S., Kawakami N., Matsubara Y., Tsuji T., Ohara T., Katayama Y. et al. Radiographic adjacent segment degeneration at 5 years after l4/5 posterior lumbar interbody fusion with pedicle screw instrumentation: evaluation by computed tomography and annual screening with magnetic resonance imaging. Clin Spine Surg. 2016;29(9):e442-e451. doi: 10.1097/BSD.0b013e31828aec78.
  45. Nakashima H., Kawakami N., Tsuji T., Ohara T., Suzuki Y., Saito T. et al. Adjacent segment dis-ease after posterior lumbar interbody fusion: based on cases with a minimum of 10 years of followup. Spine (Phila Pa 1976). 2015;40(14):e831-841. doi: 10.1097/BRS.0000000000000917.
  46. Segura-Trepichio M., Candela-Zaplana D., Montozanuñez J.M., Martin-Benlloch A., Nolasco A. Length of stay, costs, and complications in lumbar disc herniation surgery by standard PlIfversus a new dynamic interspinous stabilization technique. Patient Saf Surg. 2017;11:26. doi: 10.1186/s13037-017-0141-1.
  47. Liu J., Deng H., Long X., Chen X., Xu R., Liu Z. A comparative study of perioperative complications between transforaminal versus posterior lumbar interbody fusion in degenerative lumbar spondylolisthesis. Eur Spine J. 2016;25(5):1575-1580. doi: 10.1007/s00586-015-4086-8.
  48. Kalevski S.K., Peev N.A., Haritonov D.G. Incidental Dural Tears in lumbar decompressive surgery: Incidence, causes, treatment, results. Asian J Neurosurg. 2010;5(1):54-59.
  49. Ferrero E., Guigui P. Current trends in the management of degenerative lumbar spondylolisthesis. EFORT Open Rev. 2018;3(5):192-199. doi: 10.1302/2058-5241.3.170050.
  50. Veresciagina K., Mehrkens A., Schären S., Jeanneret B. Minimum ten-year follow-up of decompression and dynamic stabilization for spinal stenosis with degenerative spondylolisthesis. J Spine Surg.2018;4(1):93-101. doi: 10.21037/jss.2018.03.20.
  51. Yeh M., Kuo C.H., Wu J.C., Huang W.C., Tu T.H., Fay L.Y. et al. Changes of facet joints after dynamic stabilization: continuous degeneration or slow fusion? World Neurosurg. 2018;113:e45-e50. doi: 10.1016/j.wneu.2018.01.148.
  52. Ozer A.F., Oktenoglu T., Egemen E., Sasani M., Yilmaz A., Erbulut D.U. et al. Lumbar single-level dynamic stabilization with semi-rigid and full dynamic systems: aretrospective clinical and radiological analysis of 71 patients. Clin Orthop Surg. 2017;9(3):310-316. doi: 10.4055/cios.2017.9.3.310.
  53. Fay L.Y., Wu J.C., Tsai T.Y., Tu T.H., Wu C.L., Huang W.C., Cheng H. Intervertebral disc rehydration after lumbar dynamic stabilization: magnetic resonance image evaluation with a mean followup of four years. Adv Orthop. 2013;2013:437570. doi: 10.1155/2013/437570.
  54. Gomleksiz C., Sasani M., Oktenoglu T., Ozer A.F. Ashort history of posterior dynamic stabilization. Adv Orthop. 2012;2012:629698. doi: 10.1155/2012/629698.
  55. Yilmaz A., Senturk S., Sasani M., Oktenoglu T., Yaman O., Yildirim H. et al. Disc rehydration after dynamic stabilization: areport of 59 cases. Asian Spine J. 2017;11(3):348-355. doi: 10.4184/asj.2017.11.3.348.
  56. Wu J.-C., Huang W.C., Tsai H.W., Ko C.C., Wu C.L., Tu T.H., Cheng H. Pedicle screw loosening in dynamic stabilization: incidence, risk, and outcome in 126 patients. Neurosurg Focus. 2011;31(4):e9. doi: 10.3171/2011.7.focuS11125.
  57. Hoppe S., Loosli Y., Baumgartner D., Heini P., Benneker L. Influence of screw augmentation in posterior dynamic and rigid stabilization systems in osteoporotic lumbar vertebrae: a biomechanical cadaveric study. Spine (Phila Pa 1976). 2014;39(6):e384-389. doi: 10.1097/BRS.0000000000000198.
  58. Mohieldin M.M., Ali A.M. Lumbar transpedicular implant failure: aclinical and surgical challenge and its radiological assessment. Asian Spine J.2014;8(3):281-297. doi: 10.4184/asj.2014.8.3.281.

Statistics

Views

Abstract: 357

Cited-by

CrossRef: 2

  1. Byvaltsev V, Kalinin A, Goloborodko V, Shepelev V, Pestryakov Y, Konovalov N. Effectiveness of simultaneous and staged minimally invasive dorsal decompression-stabilization procedures in patients with lumbar spine degenerative diseases. Voprosy neirokhirurgii imeni N.N. Burdenko. 2021;85(1):36. doi: 10.17116/neiro20218501136
  2. Krivoshein AY, Konev VP, Kolesov SV, Moskovsky SN. COMPARATIVE ANALYSIS OF RADIOLOGIC ASPECTS OF FACET JOINTS IN SURGICAL TREATMENT OF PATIENTS WITH DEGENERATIVE DISEASES OF THE LUMBAR SPINE. Innovative Medicine of Kuban. 2021;(1):14. doi: 10.35401/2500-0268-2021-21-1-14-20

Dimensions

Article Metrics

Metrics Loading ...

PlumX


Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies