Antibacterial Activity of Antibiotic-Impregnated Bone Cement Based Coatings Against Microorganisms with Different Antibiotic Resistance Levels

Cover Page


Cite item

Abstract

Purpose — to evaluate the presence and duration of antibiotic activity of antibiotic-impregnated bone cement based coatings samples against antibiotic-sensitive and antibiotic-resistant microorganisms.

Material and Methods. Bone cement based coatings impregnated with antibiotics (gentamycin, vancomycin, colistin, meropenem, fosfomycin) are formed on titanium (Ti) plates. A plate rinse was carried out; antibiotic concentrations in the rinsed solutions were estimated by a serial broth microdilution method. Antibacterial activity of the control and rinsed samples against the antibiotic-sensitive and multiple-antibiotic-resistant Staphylococcus aureus and Pseudomonas aeruginosa strains was estimated by a bilayer agar method.

Results. The meropenem and fosfomycin concentrations in the rinsed solutions obtained at a one-fold (16 μg/ml for both antibiotics) and two-fold treatment (2 μg/ml for meropenem and 8 μg/ml for fosfomycin) were sufficient to suppress the growth of the control strains. One-fold rinse of samples with colistin eliminated their antibacterial activity completely. The marked activity of the samples with meropenem and fosfomycin persisted against the antibiotic-sensitive P. aeruginosa ATCC 27853 strain after 2 rinse cycles; single-rinsed samples with fosfomycin also maintained the activity against the extensively antibioticresistant P. aeruginosa BP-150 strain. Vancomycin-containing samples possessed the sufficient antibacterial activity against both methicillin-sensitive (MSSA) and methicillin-resistant (MRSA) S. aureus strains; two-fold rinse of the samples eliminated their bactericidal properties.

Conclusion. Bone cement based coatings impregnated with fosfomycin and meropenem possess the most marked and long-lasting antibacterial activity, manifested mainly against the antibiotic-sensitive strains. 

About the authors

D. V. Tapalski

Gomel State Medical University

Author for correspondence.
Email: tapalskiy@gsmu.by

Dmitry V. Tapalski — Cand. Sci. (Med.), associate professor, head of the Department of Microbiology, Virology and Immunology

Gomel

Belarus

P. A. Volotovski

Republican Scientific and Practical Centre for Traumatology and Orthopedics

Email: fake@neicon.ru

Pavel A Volotovski — researcher. Laboratory of Traumatology of Adult Age 

Minsk

Belarus

A. I. Kozlova

Gomel State Medical University

Email: fake@neicon.ru

Anna I. Kozlova — senior lecturer. Department of Microbiology, Virology and Immunology 

 

Gomel

Belarus

A. Sitnik

Republican Scientific and Practical Centre for Traumatology and Orthopedics

Email: fake@neicon.ru

Alexander A Sitnik — Cand. Sci. (Med.), head of the Laboratory of Traumatology of Adult Age 

Minsk

Belarus

References

  1. Arciola C.R., An Y.H., Campoccia D., Donati M.E., Montanaro L. Etiology of implant orthopedic infections: a survey on 1027 clinical isolates. Int J Artif Organs. 2005;28(11):1091-1100. doi: 10.1177/039139880502801106.
  2. Murillo O., Grau 1., Lora-Tamayo J., Gomez- Junyent J., Ribera A., Tubau F., Ariza J., Pallares R. The changing epidenuology of bacteraemic osteoarticular infections in the early 21st century. Clin Microbiol Infect 2015;21(3):254.el-8.2. doi: 10.1016/j.cmi.2014.09.007.
  3. Agrawal A.C., Jain S., Jain R.K., Raza H.K.T. Pathogenic bacteria in an orthopaedic hospital in India. / Infect Dev Ctries. 2008;2:120-123. doi: 10.3855/jidc.282.
  4. Rodriguez-Pardo D., Pigrau C., Lora-Tamayo J., Soriano A., del Toro M.D., Coho J. et al. Gram-negative prosthetic joint infection: outcome of a debridement, antibiotics and implant retention approach. A large multicentre study. Clin Microbiol Infect. 2014;20(11): 911-919. doi: 10.1111/1469-0691.12649.
  5. Pena С., Suarez С., Tubau F., Gutierrez О., Dominguez A., Oliver A., Pujol M., Gudiol F., Ariza J. Nosocomial spread of Pseudomonas aeruginosa producing the metallo-beta-lactamase VlM-2 in a Spanish hospital: clinical and epidemiological implications. Clin Microbiol Infect. 2007;13(10):1026-1029. doi: 10.1111/j.l469-0691.2007.01784.x.
  6. Ribera A., Benavent E., Lora-Tamayo J., Tubau F., Pedrero S., Cabo X., Ariza J., Murillo O. Osteoarticular infection caused by MDR Pseudomonas aeruginosa: the benefits of combination therapy with colistin plus p-lactams. J Antimicrob Chemother. 2015;70(12):3357-3365. doi: 10.1093/jac/dkv281.
  7. Hsieh P.H., Lee M.S., Hsu K.Y., Chang Y.H., Shih H.N., Ueng S.W. Gram-negative prosthetic joint infections: risk factors and outcome of treatment. Clin Infect Dis. 2009;49(7):1036-1043. doi: 10.1086/605593.
  8. Anagnostakos K., Furst О., KelmJ.Antibiotic-impregnated PMMA hip spacers: current status. Acta Orthop. 2006;77(4):628-637. doi: 10.1080/17453670610012719.
  9. Божкова C.A., Новокшонова A.A., Конев B.A. Современные возможности локальной антибиотико- терапии перипротезной инфекции и остеомиелита. Травматология и ортопедия России. 2015;(3):92-107. D01: 10.21823/2311-2905-2015-0-3-92-107.
  10. Thonse R., Conway J. Antibiotic cement-coated interlocking nail for the treatment of infected nonunions and segmental bone defects. / Orthop Trauma. 2007;21(4): 258-268. doi: 10.1097/BOT.0b013e31803ea9e6.
  11. Волотовский П.А., Ситник A.A., Белецкий A.B. Применение стержней с блокированием и антибактериальным покрытием для лечения инфицированных несращений костей голени. Медицинский журнал. 2017;4(62):38-42.
  12. Qia C., Rogachev A.V., Tapal’skii D.V., Yarmolenko M.A., Rogachev A.A., Jianga X. et al. Nanocomposite coatings for implants protection from microbial colonization: formation features, structure, and properties. Surf Coat Tech. 2017;315:350-358. doi: 10.1016/j.surfcoat.2017.02.066.
  13. Wasko M.K., Kaminski R. Custom-made antibiotic cement nails in orthopaedic trauma: review of outcomes, new approaches, and perspectives. Biomed Res Int. 2015;2015. doi: 10.1155/2015/387186.
  14. Gasparini G., De Gori M., Calonego G., Della Bora T., Caroleo B., Galasso O. Drug elution from high-dose antibiotic-loaded acrylic cement: a comparative, in vitro study. Orthopedics. 2014;37(ll):e999-1005. doi: 10.3928/01477447-20141023-57.
  15. Hinarejos R, Guirro R, Leal J., Montserrat F., Pelfort X. , Sorli M.L. et al. The use of erythromycin and colis- tin-loaded cement in total knee arthroplasty does not reduce the incidence of infection: a prospective randomized study in 3000 knees. / Bone Joint Surg Am. 2013;95(9):769-774. doi: 10.2106/JBIS.L.00901.
  16. Springer B.D., Lee G.C., Osmon D., Haidukewych G.J., Hanssen A.D., Jacofsky D.J. Systemic safety of high-dose antibiotic-loaded cement spacers after resection of an infected total knee arthroplasty. Clin Orthop Relat Res. 2004;(427):47-51. doi: 10.1097/01.blo.OOOO144476.43661.10.
  17. Couet W., Gregoire N., Marchand S., Mimoz О. CoHstin pharmacokinetics: the fog is lifting. Clin Microbiol Infect 2012;18(l):30-39. doi: 10.1111/j.1469-0691.2011.03667.x.
  18. Конев B.A., Божкова C.A., Нетылько Г.И., Афанасьев А.В., Румакин В.П., Полякова Е.М. и др. Результаты применения фосфомицина для импрегнации остеозамещающих материалов при лечении хронического остеомиелита. Травматология и ортопедия России. 2016;22(2):43-56.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 82474 от 10.12.2021.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies