MORPHOGENESIS OF KNEE HYALINE CARTILAGE DURING INTRAARTICULAR INJECTION OF PLATELET-RICH AUTOLOGOUS PLASMA AND/OR HYALURONIC ACID PREPARATION IN RATS WITH EXPERIMENTAL OSTEOARTHRITIS

Cover Page


Cite item

Full Text

Abstract

According to current concepts, the influence of autologous platelet-rich plasma (PRP) and high molecular hyaluronates (HA) on the repair of hyaline cartilage during its inflammatory and degenerative changes has been insufficiently studied yet. The objective of the work was to evaluate the morphological changes in the structure of hyaline cartilage in experimental osteoarthritis after intra-articular injection of PRP and/or HA. Material and methods. The authors used 50 adult rats of Wistar line, weighing 250±2,2 g., distributed into five groups of 10 animals (two control and three experimental groups). An experimental gonarthosis was simulated on four groups of animals. Animals of the first experimental group received intra-articular injection of PRP, the second group – HA, the third – both PRP and HA. Results. No morphological signs of degenerative and inflammatory changes in the first control group were identified. Following osteoarthritis simulation the articular cartilage thinned to 121±20,4 microns (p<0,05) and the volume fraction of chondrocyte decreased to 1,2±0,6% (p<0,05). The authors observed an uneven coloration of collagen fibers with severe tinctorial properties disorder of the articular cartilage matrix. After the RPR introduction the authors observed tickening of the articular cartilage up to 275±18,9 micron (p<0,05) and the volume fraction of chondrocytes up to 18,4±2,0% (p<0,05). The contour of the cartilage surface became smoother with the formation of a cell-free zone. Collagen fibers demonstrated a uniform distribution, tinctorial properties of cartilage matrix in all areas were preserved, no signs of inflammation were noted. After HA introduction the authors observed thickening of the cartilage plate up to 264±21,3 microns (p<0,05) and the volume fraction of chondrocytes up to 11,6±1,2% (p<0,05). The surface of the cartilage featured uneven contours due to multiple areas of pulping. Uneven tinctorial properties of cartilage matrix, thickness and orientation of collagen fibres were retained. No signes of inflammation were observed. After the combined consecutive application of PRP and HA cartilage thickness increased up to 268±15,3 microns (p<0,05) and the volume fraction of chondrocytes increased up to 12,7±0,9% (p<0,05). Individual portions of pulping on the cartilage surface were observed. Tinctorial properties of the cartilage matrix were preserved; the focal uneven staining of collagen fibers in the basal zone was observed. No signs of inflammation were noted. Conclusion. During osteoarthritis simulation in knee joints of experimental Wistar line rats the authors observed severe structural changes in articular hyaline cartilage including complete destruction accompanied by vascular proliferation and granulomatous inflammation. Intraarticular injections of PRP, HA as well as PRP in combination with HA during the simulation of osteoarthrosis were accompanied by a decrease in the severity of degenerative and dystrophic processes and improval of tinctorial properties of articular cartilage matrix. Sole application of PRP or consecutive application of PRP followed by HA were observed as having the more significant reparative effect on articular cartilage as compared to HA.

About the authors

S. A. Demkin

Volgograd State Medical University pl. Pavshikh Bortsov, 1, Volgograd, 400131, Russia

Author for correspondence.
Email: smdem@mail.ru
graduate student, Department of Traumatology, Orthopedics and Field Surgery, Volgograd State Medical University; Head of Laboratory of Experimental and Clinical Orthopedics, Volgograd Medical Scientific Centre Russian Federation

D. A. Malanin

Volgograd State Medical University pl. Pavshikh Bortsov, 1, Volgograd, 400131, Russia
Volgograd Medical Scientific Centre 1G, ul. Rokossovskogo, Volgograd, 400081, Russia

Email: smdem@mail.ru
Dr. Sci. (Med.) professor, the Head of the Department of Traumatology, Orthopedics and Field Surgery, Volgograd State Medical University; Head of Laboratory of Experimental and Clinical Orthopedics for Volgograd Medical Scientific Centre Russian Federation

L. N. Rogova

Volgograd State Medical University pl. Pavshikh Bortsov, 1, Volgograd, 400131, Russia

Email: smdem@mail.ru
Dr. Sci. (Med.) professor, the Head of Physiopathology Department Russian Federation

G. L. Snigur

Volgograd State Medical University pl. Pavshikh Bortsov, 1, Volgograd, 400131, Russia

Email: smdem@mail.ru
Russian Federation

N. V. Grigorieva

Volgograd State Medical University pl. Pavshikh Bortsov, 1, Volgograd, 400131, Russia

Email: smdem@mail.ru
Dr. Sci. (Med.), professor at Pathologic Anatomy Department Russian Federation

K. V. Baydova

Volgograd Medical Scientific Centre 1G, ul. Rokossovskogo, Volgograd, 400081, Russia

Email: smdem@mail.ru
laboratory assistant Russian Federation

References

  1. Башкина А.С., Широкова Л.Ю., Князева Т.С., Паруля О.М., Абросимова Е.Б., Носков С.М. применение обогащенной тромбоцитами аутолоичной плазмы в купировании болевого синдрома большого вертела. Травматология и ортопедия России. 2011;2(60):57-61.
  2. Котельников Г.П., Ларцев Ю.В., Махова А.Н. Сравнительная оценка структурных изменений тканей сустава при различных моделях экспериментального артроза. Казанский медицинский журнал. 2006;(1):31-35.
  3. Маланин Д.А., Новочадов В.В., Демкин С.А., Демещенко М.В., Данилов Д.И. Обогащенная тромбоцитами аутологичная плазма в лечении пациентов с гонартрозом III стадии. Травматология и ортопедия России. 2014;3(73):52-59.
  4. Широкова Л.Ю., Носков С.М., Бахтиарова Т.И., Снигирева А.В., Носкова Т.С. Локальная терапия гонартроза аутологичной обогащенной тромбоцитами плазмой. Современные технологии в медицине. 2012;1:97-100.
  5. Andia I., Sanchez M., Maffulli N. Joint pathology and platelet-rich plasma therapies. Expert opin Biol Ther. 2012;12(1):7-22. doi: 10.1517/14712598.2012.632765.
  6. Coudriet g.M., He J., Trucco M. Hepatocyte growth factor modulates interleukin-6 production in bone marrow derived macrophages:implications for inflammatory mediated diseases. PLoS one. 2010;5 (11):http://www. plosone.org/article/info%3Adoi%2f10.1371%2fjournal. pone.0015384.
  7. Drengk A., Zapf A., Sturmer E.K., Sturmer K.M., frosch K.H. Influence of platelet-rich plasma on chondrogenic differentiation and proliferation of chondrocytes and mesenchymal stem cells. Cells Tissues organs. 2009;189(5):317-326. doi: 10.1159/000151290.
  8. Filardo G., Kon E., Roffi A., Di Matteo B., Merli M.L., Marcacci M. Platelet-rich plasma:why intra-articular? A systematic review of preclinical studies and clinical evidence on PRP for joint degeneration. Knee Surg Sports Traumatol Arthrosc. 2015;23(9):2459-2474. doi: 10.1007/s00167-013-2743-1.
  9. Guner S., Buyukbebeci O. Analyzing the effects of platelet gel on knee osteoarthritis in the rat model. Clin Appl Thromb Hemost. 2013;19(5):494-498. doi: 10.1177/1076029612452117.
  10. Hedbom E., Hauselmann H.J. Molecular aspects of pathogenesis in osteoarthritis:the role of inflammation. Cell Mol Life Sci. 2002;59(1):45-53.
  11. Karlsson J., Sjögren L.S., Lohmander L.S. Comparison of two hyaluronan drugs and placebo in patients with knee osteoarthritis. A controlled, randomized, double-blind, parallel-design multicentre study. rheumatology (oxford). 2002;(11):1240-1248.
  12. Kuettner K.E., goldberg V.M. Osteoarthritic Disorders. Rosemont, IL: American Academy of Orthopedic Surgeons; 1995. 507 р.
  13. Kwon D.R., Park g.y., Lee S.U. The effects of intra-articular platelet-rich plasma injection according to the severity of collagenase induced knee osteoarthritis in a rabbit model. Ann rehabil Med. 2012;36(4):458-465. doi: 10.5535/arm.2012.36.4.458.
  14. Malfait A.M., Little C.B., McDougall J.J. A commentary on modelling osteoarthritis pain in small animals. osteoarthritis Cartilage. 2013;21(9):1316-1326. doi: 10.1016/j.joca.2013.06.003.
  15. Moreland L.W. Review Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis:mechanisms of action. Arthritis res Ther. 2003;2(5):54-67.
  16. Oliveira M.Z., Albano M.B., Namba M.M., Cunha L.A.M., Gonçalves R.R.L., Trindade E.S., Andrade L.F., Vidigal L. Effect of hyaluronic acids as chondroprotective in experimental model of osteoarthrosis. rev Bras ortop. 2014;49(1):62-68. doi: 10.1016/j.rboe.2014.01.007.
  17. Sezgin M., Demirel A.C., Karaca C. Does hyaluronan affect inflammatory cytokines in knee osteoarthritis? Rheumatol Int. 2005;(25):264-269. doi: 10.1007/s00296-003-0428-7.
  18. Walshe T.E., Dole V.S., Maharaj A.S.R. Inhibition of VEgf or Tgf-beta signaling activates endothelium and increases leukocyte rolling. Arterioscler Thromb Vasc Biol. 2009;29(8):1185-1192. doi: 10.1161/ATVBAHA.109.186742.
  19. Wang C.T., Lin Y.T., Chiang B.L., Lin Y.H., Hou S.M. High molecular weight hyaluronic acid down-regulates the gene expression of osteoarthritis-associated cytokines and enzymes in fibroblast-like synoviocytes from patients with early osteoarthritis. osteoarthritis Cartilage. 2006;14(12):1237-1247. doi: 10.1016/j.joca.2006.05.009.
  20. Yang S.Y., Ahn S.T., Rhie J.W., Lee K.Y., Choi J.H., Lee B.J., Oh G.T. Platelet supernatant promotes proliferation of auricularchondrocytes and formation of chondrocyte mass. Ann Plast Surg. 2000;44(4):405-411.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 82474 от 10.12.2021.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies